Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $C_3^2:C_3$ | |
| CHM label : | $E(9):3=[3^{2}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
9T7 x 3, 27T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,5,4)(6,7,8)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,3,7)(2,4,8)(5,6,9)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,6,3)(2,7,4)(5,9,8)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,6,5)(2,7,3)(4,9,8)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,6,4)(2,7,5)(3,9,8)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,9,2)(3,5,4)(6,8,7)$ |
Group invariants
| Order: | $27=3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [27, 3] |
| Character table: |
3 3 2 2 3 2 2 2 2 2 2 3
1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j
2P 1a 3b 3a 3j 3g 3i 3h 3d 3f 3e 3c
3P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 A A A /A /A /A 1
X.3 1 1 1 1 /A /A /A A A A 1
X.4 1 A /A 1 1 A /A 1 A /A 1
X.5 1 /A A 1 1 /A A 1 /A A 1
X.6 1 A /A 1 A /A 1 /A 1 A 1
X.7 1 /A A 1 /A A 1 A 1 /A 1
X.8 1 A /A 1 /A 1 A A /A 1 1
X.9 1 /A A 1 A 1 /A /A A 1 1
X.10 3 . . B . . . . . . /B
X.11 3 . . /B . . . . . . B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|