Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $C_3^2:C_2$ | |
| CHM label : | $S(3)[1/2]S(3)=3^{2}:2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,2)(3,6)(4,8)(5,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 4
Low degree siblings
18T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,5,6)(2,3,7)(4,8,9)$ |
Group invariants
| Order: | $18=2 \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [18, 4] |
| Character table: |
2 1 1 . . . .
3 2 . 2 2 2 2
1a 2a 3a 3b 3c 3d
2P 1a 1a 3a 3b 3c 3d
3P 1a 2a 1a 1a 1a 1a
X.1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1
X.3 2 . 2 -1 -1 -1
X.4 2 . -1 2 -1 -1
X.5 2 . -1 -1 -1 2
X.6 2 . -1 -1 2 -1
|