Properties

Label 9T34
Order \(362880\)
n \(9\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $S_9$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $9$
Transitive number $t$ :  $34$
Group :  $S_9$
CHM label :  $S9$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2), (1,2,3,4,5,6,7,8,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Low degree siblings

18T887, 36T28590

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1 $ $378$ $2$ $(3,5)(4,6)$
$ 5, 1, 1, 1, 1 $ $3024$ $5$ $(1,7,9,2,8)$
$ 5, 2, 2 $ $9072$ $10$ $(1,2,7,8,9)(3,5)(4,6)$
$ 4, 1, 1, 1, 1, 1 $ $756$ $4$ $(3,6,5,4)$
$ 5, 4 $ $18144$ $20$ $(1,7,9,2,8)(3,6,5,4)$
$ 2, 2, 2, 2, 1 $ $945$ $2$ $(1,4)(2,5)(6,7)(8,9)$
$ 4, 4, 1 $ $11340$ $4$ $(1,7,4,6)(2,8,5,9)$
$ 8, 1 $ $45360$ $8$ $(1,8,7,5,4,9,6,2)$
$ 3, 1, 1, 1, 1, 1, 1 $ $168$ $3$ $(1,5,8)$
$ 3, 2, 2, 1, 1 $ $7560$ $6$ $(1,8,5)(4,9)(6,7)$
$ 2, 1, 1, 1, 1, 1, 1, 1 $ $36$ $2$ $(2,4)$
$ 5, 2, 1, 1 $ $18144$ $10$ $(2,4)(5,8,6,9,7)$
$ 3, 2, 1, 1, 1, 1 $ $2520$ $6$ $(1,8,5)(6,7)$
$ 4, 2, 1, 1, 1 $ $7560$ $4$ $(2,3)(4,7,9,6)$
$ 4, 3, 2 $ $15120$ $12$ $(1,5,8)(2,3)(4,6,9,7)$
$ 4, 3, 1, 1 $ $15120$ $12$ $(1,5,8)(4,7,9,6)$
$ 3, 3, 1, 1, 1 $ $3360$ $3$ $(2,4,9)(3,7,6)$
$ 5, 3, 1 $ $24192$ $15$ $(1,8,5)(2,4,6,3,7)$
$ 6, 2, 1 $ $30240$ $6$ $(2,3,7,5,8,9)(4,6)$
$ 2, 2, 2, 1, 1, 1 $ $1260$ $2$ $(2,5)(3,8)(7,9)$
$ 6, 1, 1, 1 $ $10080$ $6$ $(2,9,8,5,7,3)$
$ 3, 3, 2, 1 $ $10080$ $6$ $(1,4)(2,7,8)(3,5,9)$
$ 4, 2, 2, 1 $ $11340$ $4$ $( 1, 4)( 2, 5)( 6, 8, 7, 9)$
$ 7, 1, 1 $ $25920$ $7$ $(1,5,4,8,2,7,9)$
$ 3, 3, 3 $ $2240$ $3$ $(1,7,2)(3,9,6)(4,5,8)$
$ 9 $ $40320$ $9$ $(1,6,5,7,3,8,2,9,4)$
$ 3, 2, 2, 2 $ $2520$ $6$ $(1,5,8)(2,3)(4,6)(7,9)$
$ 6, 3 $ $20160$ $6$ $( 1, 3, 2, 6, 7, 9)( 4, 5, 8)$
$ 7, 2 $ $25920$ $14$ $(1,5,4,8,2,7,9)(3,6)$

Group invariants

Order:  $362880=2^{7} \cdot 3^{4} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.