Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $33$ | |
| Group : | $A_9$ | |
| CHM label : | $A9$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3), (3,4,5,6,7,8,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
36T23796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1 $ | $378$ | $2$ | $(1,6)(3,8)$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $168$ | $3$ | $(5,9,7)$ |
| $ 4, 2, 1, 1, 1 $ | $7560$ | $4$ | $(1,3,6,8)(2,4)$ |
| $ 3, 2, 2, 1, 1 $ | $7560$ | $6$ | $(1,6)(3,8)(5,7,9)$ |
| $ 4, 3, 2 $ | $15120$ | $12$ | $(1,8,6,3)(2,4)(5,9,7)$ |
| $ 5, 1, 1, 1, 1 $ | $3024$ | $5$ | $(2,9,4,6,7)$ |
| $ 5, 3, 1 $ | $12096$ | $15$ | $(2,4,7,9,6)(3,5,8)$ |
| $ 5, 3, 1 $ | $12096$ | $15$ | $(2,4,7,9,6)(3,8,5)$ |
| $ 7, 1, 1 $ | $25920$ | $7$ | $(1,5,4,2,9,3,8)$ |
| $ 3, 3, 3 $ | $2240$ | $3$ | $(1,6,4)(2,9,7)(3,8,5)$ |
| $ 9 $ | $20160$ | $9$ | $(1,3,9,6,8,7,4,5,2)$ |
| $ 2, 2, 2, 2, 1 $ | $945$ | $2$ | $(1,7)(2,8)(4,6)(5,9)$ |
| $ 3, 3, 1, 1, 1 $ | $3360$ | $3$ | $(2,5,4)(6,8,9)$ |
| $ 6, 2, 1 $ | $30240$ | $6$ | $(1,7)(2,6,5,8,4,9)$ |
| $ 9 $ | $20160$ | $9$ | $(1,7,3,8,4,5,2,6,9)$ |
| $ 4, 4, 1 $ | $11340$ | $4$ | $( 1, 6, 5, 2)( 4, 9, 8, 7)$ |
| $ 5, 2, 2 $ | $9072$ | $10$ | $(1,5,4,6,9)(2,7)(3,8)$ |
Group invariants
| Order: | $181440=2^{6} \cdot 3^{4} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 6 1 1 . . 2 5 2 3 . . 3 3 2 4 . .
3 4 1 3 1 4 2 1 1 . 3 1 1 1 1 1 . . 2
5 1 . . . . . 1 1 1 1 1 1 . . . . . .
7 1 . . . . . . . . . . . . . . . 1 .
1a 2a 3a 6a 3b 9a 5a 2b 10a 3c 15a 15b 4a 6b 12a 4b 7a 9b
2P 1a 1a 3a 3a 3b 9a 5a 1a 5a 3c 15a 15b 2b 3c 6b 2a 7a 9b
3P 1a 2a 1a 2a 1a 3b 5a 2b 10a 1a 5a 5a 4a 2b 4a 4b 7a 3b
5P 1a 2a 3a 6a 3b 9a 1a 2b 2b 3c 3c 3c 4a 6b 12a 4b 7a 9b
7P 1a 2a 3a 6a 3b 9a 5a 2b 10a 3c 15b 15a 4a 6b 12a 4b 1a 9b
11P 1a 2a 3a 6a 3b 9a 5a 2b 10a 3c 15b 15a 4a 6b 12a 4b 7a 9b
13P 1a 2a 3a 6a 3b 9a 5a 2b 10a 3c 15b 15a 4a 6b 12a 4b 7a 9b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 8 . 2 . -1 -1 3 4 -1 5 . . 2 1 -1 . 1 -1
X.3 21 -3 . . 3 . 1 1 1 -3 A /A -1 1 -1 1 . .
X.4 21 -3 . . 3 . 1 1 1 -3 /A A -1 1 -1 1 . .
X.5 27 3 . . . . 2 7 2 9 -1 -1 1 1 1 -1 -1 .
X.6 28 -4 1 -1 1 1 3 4 -1 10 . . . -2 . . . 1
X.7 35 3 2 . -1 -1 . -5 . 5 . . -1 1 -1 -1 . 2
X.8 35 3 2 . -1 2 . -5 . 5 . . -1 1 -1 -1 . -1
X.9 42 2 3 -1 -3 . -3 6 1 . . . . . . 2 . .
X.10 48 . . . 3 . -2 8 -2 6 1 1 . 2 . . -1 .
X.11 56 . 2 . 2 -1 1 -4 1 11 1 1 -2 -1 1 . . -1
X.12 84 4 3 1 3 . -1 4 -1 -6 -1 -1 . -2 . . . .
X.13 105 1 -3 1 -3 . . 5 . 15 . . -1 -1 -1 1 . .
X.14 120 8 -3 -1 3 . . . . . . . . . . . 1 .
X.15 162 -6 . . . . -3 6 1 . . . . . . -2 1 .
X.16 168 . . . -3 . 3 4 -1 -15 . . -2 1 1 . . .
X.17 189 -3 . . . . -1 -11 -1 9 -1 -1 1 1 1 1 . .
X.18 216 . . . . . 1 -4 1 -9 1 1 2 -1 -1 . -1 .
A = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15
|