Properties

Label 9T32
Order \(1512\)
n \(9\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $\mathrm{P}\Gamma\mathrm{L}(2,8)$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $9$
Transitive number $t$ :  $32$
Group :  $\mathrm{P}\Gamma\mathrm{L}(2,8)$
CHM label :  $L(9):3=P|L(2,8)$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,5)(3,6)(4,7)(8,9), (1,9)(2,3)(4,5)(6,7), (1,2,4,3,6,7,5), (2,4,6)(3,5,7)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Low degree siblings

27T391, 28T165, 36T2342

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1 $ $63$ $2$ $(1,6)(2,8)(3,5)(4,9)$
$ 3, 3, 1, 1, 1 $ $84$ $3$ $(2,5,4)(3,9,8)$
$ 3, 3, 1, 1, 1 $ $84$ $3$ $(2,4,5)(3,8,9)$
$ 6, 2, 1 $ $252$ $6$ $(1,6)(2,9,5,8,4,3)$
$ 6, 2, 1 $ $252$ $6$ $(1,6)(2,3,4,8,5,9)$
$ 3, 3, 3 $ $56$ $3$ $(1,2,6)(3,4,9)(5,7,8)$
$ 9 $ $168$ $9$ $(1,3,5,2,4,7,6,9,8)$
$ 9 $ $168$ $9$ $(1,5,4,6,8,3,2,7,9)$
$ 7, 1, 1 $ $216$ $7$ $(2,3,7,6,9,8,4)$
$ 9 $ $168$ $9$ $(1,6,9,8,5,3,4,7,2)$

Group invariants

Order:  $1512=2^{3} \cdot 3^{3} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [1512, 779]
Character table:   
      2  3  1  1  3   1   1  .   .   .  .  .
      3  3  2  2  1   1   1  3   2   2  .  2
      7  1  .  .  .   .   .  .   .   .  1  .

        1a 3a 3b 2a  6a  6b 3c  9a  9b 7a 9c
     2P 1a 3b 3a 1a  3b  3a 3c  9b  9a 7a 9c
     3P 1a 1a 1a 2a  2a  2a 1a  3c  3c 7a 3c
     5P 1a 3b 3a 2a  6b  6a 3c  9b  9a 7a 9c
     7P 1a 3a 3b 2a  6a  6b 3c  9a  9b 1a 9c

X.1      1  1  1  1   1   1  1   1   1  1  1
X.2      1  A /A  1   A  /A  1   A  /A  1  1
X.3      1 /A  A  1  /A   A  1  /A   A  1  1
X.4      7  1  1 -1  -1  -1 -2   1   1  .  1
X.5      7 /A  A -1 -/A  -A -2  /A   A  .  1
X.6      7  A /A -1  -A -/A -2   A  /A  .  1
X.7      8  2  2  .   .   . -1  -1  -1  1 -1
X.8      8  B /B  .   .   . -1  -A -/A  1 -1
X.9      8 /B  B  .   .   . -1 -/A  -A  1 -1
X.10    21  .  . -3   .   .  3   .   .  .  .
X.11    27  .  .  3   .   .  .   .   . -1  .

A = E(3)^2
  = (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
  = -1-Sqrt(-3) = -1-i3