Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $32$ | |
| Group : | $\mathrm{P}\Gamma\mathrm{L}(2,8)$ | |
| CHM label : | $L(9):3=P|L(2,8)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,5)(3,6)(4,7)(8,9), (1,9)(2,3)(4,5)(6,7), (1,2,4,3,6,7,5), (2,4,6)(3,5,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
27T391, 28T165, 36T2342Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3 $ | $56$ | $3$ | $(1,8,3)(2,6,5)(4,9,7)$ |
| $ 9 $ | $168$ | $9$ | $(1,7,6,8,4,5,3,9,2)$ |
| $ 9 $ | $168$ | $9$ | $(1,3,6,9,7,2,8,5,4)$ |
| $ 9 $ | $168$ | $9$ | $(1,6,7,8,4,3,9,2,5)$ |
| $ 7, 1, 1 $ | $216$ | $7$ | $(1,3,8,5,7,6,9)$ |
| $ 2, 2, 2, 2, 1 $ | $63$ | $2$ | $(1,9)(2,6)(4,7)(5,8)$ |
| $ 3, 3, 1, 1, 1 $ | $84$ | $3$ | $(1,6,5)(2,8,9)$ |
| $ 3, 3, 1, 1, 1 $ | $84$ | $3$ | $(1,5,6)(2,9,8)$ |
| $ 6, 2, 1 $ | $252$ | $6$ | $(1,8,6,9,5,2)(4,7)$ |
| $ 6, 2, 1 $ | $252$ | $6$ | $(1,2,5,9,6,8)(4,7)$ |
Group invariants
| Order: | $1512=2^{3} \cdot 3^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1512, 779] |
| Character table: |
2 3 3 1 1 1 1 . . . . .
3 3 1 2 2 1 1 3 2 2 . 2
7 1 . . . . . . . . 1 .
1a 2a 3a 3b 6a 6b 3c 9a 9b 7a 9c
2P 1a 1a 3b 3a 3a 3b 3c 9b 9a 7a 9c
3P 1a 2a 1a 1a 2a 2a 1a 3c 3c 7a 3c
5P 1a 2a 3b 3a 6b 6a 3c 9b 9a 7a 9c
7P 1a 2a 3a 3b 6a 6b 3c 9a 9b 1a 9c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 A /A /A A 1 /A A 1 1
X.3 1 1 /A A A /A 1 A /A 1 1
X.4 7 -1 1 1 -1 -1 -2 1 1 . 1
X.5 7 -1 /A A -A -/A -2 A /A . 1
X.6 7 -1 A /A -/A -A -2 /A A . 1
X.7 8 . 2 2 . . -1 -1 -1 1 -1
X.8 8 . B /B . . -1 -/A -A 1 -1
X.9 8 . /B B . . -1 -A -/A 1 -1
X.10 21 -3 . . . . 3 . . . .
X.11 27 3 . . . . . . . -1 .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|