Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ | |
| CHM label : | $[1/2.S(3)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9), (4,5)(7,8), (3,6)(4,7)(5,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
12T175, 18T219, 18T220, 18T223, 18T224, 24T1527, 24T1540, 27T214, 27T217, 36T1126, 36T1127, 36T1128, 36T1129, 36T1131, 36T1132, 36T1139, 36T1237Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(1,2,9)$ |
| $ 3, 3, 1, 1, 1 $ | $12$ | $3$ | $(1,2,9)(3,4,5)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,9,2)(3,4,5)(6,7,8)$ |
| $ 2, 2, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $(4,5)(7,8)$ |
| $ 3, 2, 2, 1, 1 $ | $54$ | $6$ | $(1,2,9)(4,5)(7,8)$ |
| $ 3, 3, 3 $ | $72$ | $3$ | $(1,7,4)(2,8,5)(3,9,6)$ |
| $ 9 $ | $72$ | $9$ | $(1,7,4,2,8,5,9,6,3)$ |
| $ 9 $ | $72$ | $9$ | $(1,7,4,9,6,3,2,8,5)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $18$ | $2$ | $(3,6)(4,7)(5,8)$ |
| $ 3, 2, 2, 2 $ | $18$ | $6$ | $(1,2,9)(3,6)(4,7)(5,8)$ |
| $ 3, 2, 2, 2 $ | $18$ | $6$ | $(1,9,2)(3,6)(4,7)(5,8)$ |
| $ 6, 1, 1, 1 $ | $36$ | $6$ | $(3,6,4,7,5,8)$ |
| $ 6, 3 $ | $36$ | $6$ | $(1,2,9)(3,6,4,7,5,8)$ |
| $ 6, 3 $ | $36$ | $6$ | $(1,9,2)(3,6,4,7,5,8)$ |
| $ 4, 2, 2, 1 $ | $162$ | $4$ | $(2,9)(3,6)(4,8,5,7)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 704] |
| Character table: |
2 3 2 1 1 1 3 2 . . . 2 2 2 1 1 1 2
3 4 3 3 4 4 1 1 2 2 2 2 2 2 2 2 2 .
1a 3a 3b 3c 3d 2a 6a 3e 9a 9b 2b 6b 6c 6d 6e 6f 4a
2P 1a 3a 3b 3d 3c 1a 3a 3e 9b 9a 1a 3a 3a 3b 3d 3c 2a
3P 1a 1a 1a 1a 1a 2a 2a 1a 3c 3d 2b 2b 2b 2b 2b 2b 4a
5P 1a 3a 3b 3d 3c 2a 6a 3e 9b 9a 2b 6c 6b 6d 6f 6e 4a
7P 1a 3a 3b 3c 3d 2a 6a 3e 9a 9b 2b 6b 6c 6d 6e 6f 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 2 2 2 2 2 2 2 -1 -1 -1 . . . . . . .
X.4 3 3 3 3 3 -1 -1 . . . 1 1 1 1 1 1 -1
X.5 3 3 3 3 3 -1 -1 . . . -1 -1 -1 -1 -1 -1 1
X.6 4 -2 1 A /A . . 1 C /C -2 D /D 1 C /C .
X.7 4 -2 1 /A A . . 1 /C C -2 /D D 1 /C C .
X.8 4 -2 1 A /A . . 1 C /C 2 -D -/D -1 -C -/C .
X.9 4 -2 1 /A A . . 1 /C C 2 -/D -D -1 -/C -C .
X.10 6 3 . -3 -3 2 -1 . . . 2 -1 -1 2 -1 -1 .
X.11 6 3 . -3 -3 2 -1 . . . -2 1 1 -2 1 1 .
X.12 6 3 . -3 -3 -2 1 . . . . E -E . E -E .
X.13 6 3 . -3 -3 -2 1 . . . . -E E . -E E .
X.14 8 -4 2 B /B . . -1 -C -/C . . . . . . .
X.15 8 -4 2 /B B . . -1 -/C -C . . . . . . .
X.16 12 . -3 3 3 . . . . . -2 -2 -2 1 1 1 .
X.17 12 . -3 3 3 . . . . . 2 2 2 -1 -1 -1 .
A = -E(3)+2*E(3)^2
= (-1-3*Sqrt(-3))/2 = -2-3b3
B = -2*E(3)+4*E(3)^2
= -1-3*Sqrt(-3) = -1-3i3
C = E(3)
= (-1+Sqrt(-3))/2 = b3
D = -2*E(3)
= 1-Sqrt(-3) = 1-i3
E = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|