Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $27$ | |
| Group : | $\PSL(2,8)$ | |
| CHM label : | $L(9)=PSL(2,8)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,5)(3,6)(4,7)(8,9), (1,9)(2,3)(4,5)(6,7), (1,2,4,3,6,7,5) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
28T70, 36T712Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1 $ | $72$ | $7$ | $(3,4,6,5,7,9,8)$ |
| $ 7, 1, 1 $ | $72$ | $7$ | $(3,5,8,6,9,4,7)$ |
| $ 7, 1, 1 $ | $72$ | $7$ | $(3,6,7,8,4,5,9)$ |
| $ 2, 2, 2, 2, 1 $ | $63$ | $2$ | $(2,3)(4,9)(5,6)(7,8)$ |
| $ 3, 3, 3 $ | $56$ | $3$ | $(1,2,3)(4,6,7)(5,9,8)$ |
| $ 9 $ | $56$ | $9$ | $(1,2,3,4,8,9,7,6,5)$ |
| $ 9 $ | $56$ | $9$ | $(1,2,3,6,9,5,4,7,8)$ |
| $ 9 $ | $56$ | $9$ | $(1,2,3,7,5,8,6,4,9)$ |
Group invariants
| Order: | $504=2^{3} \cdot 3^{2} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [504, 156] |
| Character table: |
2 3 . . . 3 . . . .
3 2 . . . . 2 2 2 2
7 1 1 1 1 . . . . .
1a 7a 7b 7c 2a 3a 9a 9b 9c
2P 1a 7c 7a 7b 1a 3a 9b 9c 9a
3P 1a 7b 7c 7a 2a 1a 3a 3a 3a
5P 1a 7c 7a 7b 2a 3a 9c 9a 9b
7P 1a 1a 1a 1a 2a 3a 9b 9c 9a
X.1 1 1 1 1 1 1 1 1 1
X.2 7 . . . -1 -2 1 1 1
X.3 7 . . . -1 1 D F E
X.4 7 . . . -1 1 E D F
X.5 7 . . . -1 1 F E D
X.6 8 1 1 1 . -1 -1 -1 -1
X.7 9 A B C 1 . . . .
X.8 9 B C A 1 . . . .
X.9 9 C A B 1 . . . .
A = E(7)^3+E(7)^4
B = E(7)^2+E(7)^5
C = E(7)+E(7)^6
D = -E(9)^4-E(9)^5
E = -E(9)^2-E(9)^7
F = E(9)^2+E(9)^4+E(9)^5+E(9)^7
|