Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $((C_3^2:Q_8):C_3):C_2$ | |
| CHM label : | $E(9):2S_{4}$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,4,5,2,3,8,7), (1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ 48: $\textrm{GL(2,3)}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T157, 18T157, 24T1325, 24T1326, 24T1327, 24T1334, 27T139, 36T689, 36T709Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $24$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $36$ | $2$ | $(3,6)(4,7)(5,8)$ |
| $ 8, 1 $ | $54$ | $8$ | $(2,3,4,6,9,8,7,5)$ |
| $ 6, 2, 1 $ | $72$ | $6$ | $(2,3,5,9,8,6)(4,7)$ |
| $ 8, 1 $ | $54$ | $8$ | $(2,3,6,7,9,8,5,4)$ |
| $ 4, 4, 1 $ | $54$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $48$ | $3$ | $(1,2,3)(4,5,6)(7,8,9)$ |
| $ 6, 3 $ | $72$ | $6$ | $(1,2,3,4,8,6)(5,9,7)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
Group invariants
| Order: | $432=2^{4} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [432, 734] |
| Character table: |
2 4 1 2 3 1 3 3 4 . 1 1
3 3 2 1 . 1 . . 1 2 1 3
1a 3a 2a 8a 6a 8b 4a 2b 3b 6b 3c
2P 1a 3a 1a 4a 3a 4a 2b 1a 3b 3c 3c
3P 1a 1a 2a 8a 2b 8b 4a 2b 1a 2a 1a
5P 1a 3a 2a 8b 6a 8a 4a 2b 3b 6b 3c
7P 1a 3a 2a 8b 6a 8a 4a 2b 3b 6b 3c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 1 1 -1 1
X.3 2 -1 . . -1 . 2 2 -1 . 2
X.4 2 -1 . A 1 -A . -2 -1 . 2
X.5 2 -1 . -A 1 A . -2 -1 . 2
X.6 3 . -1 1 . 1 -1 3 . -1 3
X.7 3 . 1 -1 . -1 -1 3 . 1 3
X.8 4 1 . . -1 . . -4 1 . 4
X.9 8 2 -2 . . . . . -1 1 -1
X.10 8 2 2 . . . . . -1 -1 -1
X.11 16 -2 . . . . . . 1 . -2
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|