Show commands:
Magma
magma: G := TransitiveGroup(9, 26);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $((C_3^2:Q_8):C_3):C_2$ | ||
CHM label: | $E(9):2S_{4}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,6,4,5,2,3,8,7), (1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ $48$: $\textrm{GL(2,3)}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T157, 18T157, 24T1325, 24T1326, 24T1327, 24T1334, 27T139, 36T689, 36T709Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 1, 1, 1 $ | $24$ | $3$ | $(3,4,5)(6,8,7)$ |
$ 2, 2, 2, 1, 1, 1 $ | $36$ | $2$ | $(3,6)(4,7)(5,8)$ |
$ 8, 1 $ | $54$ | $8$ | $(2,3,4,6,9,8,7,5)$ |
$ 6, 2, 1 $ | $72$ | $6$ | $(2,3,5,9,8,6)(4,7)$ |
$ 8, 1 $ | $54$ | $8$ | $(2,3,6,7,9,8,5,4)$ |
$ 4, 4, 1 $ | $54$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
$ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
$ 3, 3, 3 $ | $48$ | $3$ | $(1,2,3)(4,5,6)(7,8,9)$ |
$ 6, 3 $ | $72$ | $6$ | $(1,2,3,4,8,6)(5,9,7)$ |
$ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $432=2^{4} \cdot 3^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 432.734 | magma: IdentifyGroup(G);
|
Character table: |
2 4 1 2 3 1 3 3 4 . 1 1 3 3 2 1 . 1 . . 1 2 1 3 1a 3a 2a 8a 6a 8b 4a 2b 3b 6b 3c 2P 1a 3a 1a 4a 3a 4a 2b 1a 3b 3c 3c 3P 1a 1a 2a 8a 2b 8b 4a 2b 1a 2a 1a 5P 1a 3a 2a 8b 6a 8a 4a 2b 3b 6b 3c 7P 1a 3a 2a 8b 6a 8a 4a 2b 3b 6b 3c X.1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 1 -1 1 1 1 -1 1 X.3 2 -1 . . -1 . 2 2 -1 . 2 X.4 2 -1 . A 1 -A . -2 -1 . 2 X.5 2 -1 . -A 1 A . -2 -1 . 2 X.6 3 . -1 1 . 1 -1 3 . -1 3 X.7 3 . 1 -1 . -1 -1 3 . 1 3 X.8 4 1 . . -1 . . -4 1 . 4 X.9 8 2 -2 . . . . . -1 1 -1 X.10 8 2 2 . . . . . -1 -1 -1 X.11 16 -2 . . . . . . 1 . -2 A = -E(8)-E(8)^3 = -Sqrt(-2) = -i2 |
magma: CharacterTable(G);