Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $25$ | |
| Group : | $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ | |
| CHM label : | $[1/2.S(3)^{3}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9), (4,5)(7,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
12T132 x 2, 12T133, 18T141 x 2, 18T142, 18T143, 27T130, 27T131, 36T511, 36T512, 36T524, 36T546 x 2, 36T547Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(6,7,8)$ |
| $ 2, 2, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $(4,5)(7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $12$ | $3$ | $(3,4,5)(6,7,8)$ |
| $ 3, 2, 2, 1, 1 $ | $54$ | $6$ | $(2,9)(4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,2,9)(3,4,5)(6,8,7)$ |
| $ 3, 3, 3 $ | $36$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 9 $ | $36$ | $9$ | $(1,3,6,2,4,7,9,5,8)$ |
| $ 9 $ | $36$ | $9$ | $(1,3,6,9,5,8,2,4,7)$ |
| $ 3, 3, 3 $ | $36$ | $3$ | $(1,6,3)(2,7,4)(5,9,8)$ |
| $ 9 $ | $36$ | $9$ | $(1,6,4,2,7,5,9,8,3)$ |
| $ 9 $ | $36$ | $9$ | $(1,6,5,9,8,4,2,7,3)$ |
Group invariants
| Order: | $324=2^{2} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [324, 160] |
| Character table: |
2 2 1 2 . 1 . . . . . . . .
3 4 3 1 3 1 4 4 2 2 2 2 2 2
1a 3a 2a 3b 6a 3c 3d 3e 9a 9b 3f 9c 9d
2P 1a 3a 1a 3b 3a 3d 3c 3f 9d 9c 3e 9b 9a
3P 1a 1a 2a 1a 2a 1a 1a 1a 3c 3d 1a 3c 3d
5P 1a 3a 2a 3b 6a 3d 3c 3f 9d 9c 3e 9b 9a
7P 1a 3a 2a 3b 6a 3c 3d 3e 9a 9b 3f 9c 9d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 B B B /B /B /B
X.3 1 1 1 1 1 1 1 /B /B /B B B B
X.4 3 3 -1 3 -1 3 3 . . . . . .
X.5 4 -2 . 1 . A /A B 1 /B /B B 1
X.6 4 -2 . 1 . /A A /B 1 B B /B 1
X.7 4 -2 . 1 . A /A /B B 1 B 1 /B
X.8 4 -2 . 1 . /A A B /B 1 /B 1 B
X.9 4 -2 . 1 . A /A 1 /B B 1 /B B
X.10 4 -2 . 1 . /A A 1 B /B 1 B /B
X.11 6 3 -2 . 1 -3 -3 . . . . . .
X.12 6 3 2 . -1 -3 -3 . . . . . .
X.13 12 . . -3 . 3 3 . . . . . .
A = -E(3)+2*E(3)^2
= (-1-3*Sqrt(-3))/2 = -2-3b3
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|