Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $23$ | |
| Group : | $(C_3^2:Q_8):C_3$ | |
| CHM label : | $E(9):2A_{4}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,8,2,4)(3,5,6,7), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ 24: $\SL(2,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T122, 24T562, 24T569, 27T82, 36T287, 36T309Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $12$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $12$ | $3$ | $(3,5,4)(6,7,8)$ |
| $ 6, 2, 1 $ | $36$ | $6$ | $(2,3,5,9,8,6)(4,7)$ |
| $ 4, 4, 1 $ | $54$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
| $ 6, 2, 1 $ | $36$ | $6$ | $(2,6,8,9,5,3)(4,7)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $24$ | $3$ | $(1,2,3)(4,5,6)(7,8,9)$ |
| $ 3, 3, 3 $ | $24$ | $3$ | $(1,2,6)(3,7,8)(4,5,9)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
Group invariants
| Order: | $216=2^{3} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [216, 153] |
| Character table: |
2 3 1 1 1 2 1 3 . . .
3 3 2 2 1 . 1 1 2 2 3
1a 3a 3b 6a 4a 6b 2a 3c 3d 3e
2P 1a 3b 3a 3b 2a 3a 1a 3d 3c 3e
3P 1a 1a 1a 2a 4a 2a 2a 1a 1a 1a
5P 1a 3b 3a 6b 4a 6a 2a 3d 3c 3e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 A /A A 1 /A 1 /A A 1
X.3 1 /A A /A 1 A 1 A /A 1
X.4 2 -1 -1 1 . 1 -2 -1 -1 2
X.5 2 -A -/A A . /A -2 -/A -A 2
X.6 2 -/A -A /A . A -2 -A -/A 2
X.7 3 . . . -1 . 3 . . 3
X.8 8 2 2 . . . . -1 -1 -1
X.9 8 B /B . . . . -A -/A -1
X.10 8 /B B . . . . -/A -A -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|