Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $18$ | |
| Group : | $C_3^2 : D_{6} $ | |
| CHM label : | $E(9):D_{12}=[3^{2}:2]S(3)=[1/2.S(3)^{2}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,5)(6,7), (1,2,9)(3,4,5)(6,7,8), (1,2)(3,6)(4,8)(5,7), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
9T18, 18T51 x 2, 18T55 x 2, 18T56, 18T57 x 2, 27T29, 36T87 x 2, 36T90Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $6$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $(3,6)(4,7)(5,8)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $(2,9)(4,5)(6,7)$ |
| $ 6, 2, 1 $ | $18$ | $6$ | $(2,9)(3,6,4,8,5,7)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 6, 3 $ | $18$ | $6$ | $(1,2,9)(3,6,5,8,4,7)$ |
| $ 3, 3, 3 $ | $12$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
| $ 6, 3 $ | $18$ | $6$ | $(1,3,6,2,5,7)(4,8,9)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 17] |
| Character table: |
2 2 1 2 2 1 2 1 1 . 1 1
3 3 2 1 1 1 1 3 1 2 2 1
1a 3a 2a 2b 6a 2c 3b 6b 3c 3d 6c
2P 1a 3a 1a 1a 3a 1a 3b 3b 3c 3d 3d
3P 1a 1a 2a 2b 2c 2c 1a 2a 1a 1a 2b
5P 1a 3a 2a 2b 6a 2c 3b 6b 3c 3d 6c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 1 1 -1
X.3 1 1 -1 1 -1 -1 1 -1 1 1 1
X.4 1 1 1 -1 -1 -1 1 1 1 1 -1
X.5 2 2 . -2 . . 2 . -1 -1 1
X.6 2 2 . 2 . . 2 . -1 -1 -1
X.7 2 -1 . . -1 2 2 . -1 2 .
X.8 2 -1 . . 1 -2 2 . -1 2 .
X.9 4 -2 . . . . 4 . 1 -2 .
X.10 6 . -2 . . . -3 1 . . .
X.11 6 . 2 . . . -3 -1 . . .
|