Properties

Label 9T17
9T17 1 2 1->2 4 1->4 5 2->5 9 2->9 3 6 3->6 7 4->7 8 5->8 6->9 7->1 8->2 9->1 9->3
Degree $9$
Order $81$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_3 \wr C_3 $

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(9, 17);
 

Group invariants

Abstract group:  $C_3 \wr C_3 $
Copy content magma:IdentifyGroup(G);
 
Order:  $81=3^{4}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $9$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $17$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $[3^{3}]3=3wr3$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,9)$, $(1,4,7)(2,5,8)(3,6,9)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$ x 4
$9$:  $C_3^2$
$27$:  $C_3^2:C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$

Low degree siblings

9T17 x 2, 27T19, 27T21, 27T27 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{9}$ $1$ $1$ $0$ $()$
3A1 $3^{3}$ $1$ $3$ $6$ $(1,9,2)(3,5,4)(6,8,7)$
3A-1 $3^{3}$ $1$ $3$ $6$ $(1,2,9)(3,4,5)(6,7,8)$
3B1 $3^{2},1^{3}$ $3$ $3$ $4$ $(3,5,4)(6,7,8)$
3B-1 $3^{2},1^{3}$ $3$ $3$ $4$ $(3,4,5)(6,8,7)$
3C1 $3,1^{6}$ $3$ $3$ $2$ $(1,9,2)$
3C-1 $3,1^{6}$ $3$ $3$ $2$ $(1,2,9)$
3D1 $3^{3}$ $3$ $3$ $6$ $(1,2,9)(3,5,4)(6,8,7)$
3D-1 $3^{3}$ $3$ $3$ $6$ $(1,2,9)(3,5,4)(6,7,8)$
3E1 $3^{2},1^{3}$ $3$ $3$ $4$ $(3,4,5)(6,7,8)$
3E-1 $3^{2},1^{3}$ $3$ $3$ $4$ $(3,5,4)(6,8,7)$
3F1 $3^{3}$ $9$ $3$ $6$ $(1,8,4)(2,6,5)(3,9,7)$
3F-1 $3^{3}$ $9$ $3$ $6$ $(1,4,7)(2,5,8)(3,6,9)$
9A1 $9$ $9$ $9$ $8$ $(1,3,6,9,5,8,2,4,7)$
9A-1 $9$ $9$ $9$ $8$ $(1,6,5,2,7,3,9,8,4)$
9B1 $9$ $9$ $9$ $8$ $(1,5,8,2,3,6,9,4,7)$
9B-1 $9$ $9$ $9$ $8$ $(1,7,3,9,6,5,2,8,4)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 3A1 3A-1 3B1 3B-1 3C1 3C-1 3D1 3D-1 3E1 3E-1 3F1 3F-1 9A1 9A-1 9B1 9B-1
Size 1 1 1 3 3 3 3 3 3 3 3 9 9 9 9 9 9
3 P 1A 3A-1 3A1 3B-1 3B1 3C-1 3C1 3D-1 3D1 3E-1 3E1 3F-1 3F1 9A-1 9A1 9B-1 9B1
Type
81.7.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
81.7.1b1 C 1 1 1 ζ31 1 ζ31 ζ3 ζ31 ζ3 1 ζ3 ζ3 ζ31 ζ3 ζ31 1 1
81.7.1b2 C 1 1 1 ζ3 1 ζ3 ζ31 ζ3 ζ31 1 ζ31 ζ31 ζ3 ζ31 ζ3 1 1
81.7.1c1 C 1 1 1 ζ31 1 ζ31 ζ3 ζ31 ζ3 1 ζ3 ζ31 ζ3 1 1 ζ31 ζ3
81.7.1c2 C 1 1 1 ζ3 1 ζ3 ζ31 ζ3 ζ31 1 ζ31 ζ3 ζ31 1 1 ζ3 ζ31
81.7.1d1 C 1 1 1 ζ31 1 ζ31 ζ3 ζ31 ζ3 1 ζ3 1 1 ζ31 ζ3 ζ3 ζ31
81.7.1d2 C 1 1 1 ζ3 1 ζ3 ζ31 ζ3 ζ31 1 ζ31 1 1 ζ3 ζ31 ζ31 ζ3
81.7.1e1 C 1 1 1 1 1 1 1 1 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31
81.7.1e2 C 1 1 1 1 1 1 1 1 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3
81.7.3a1 C 3 3 3 0 3ζ31 0 0 0 0 3ζ3 0 0 0 0 0 0 0
81.7.3a2 C 3 3 3 0 3ζ3 0 0 0 0 3ζ31 0 0 0 0 0 0 0
81.7.3b1 C 3 3ζ31 3ζ3 2ζ3 0 1+2ζ3 12ζ3 1ζ3 1+ζ3 0 2+ζ3 0 0 0 0 0 0
81.7.3b2 C 3 3ζ3 3ζ31 1+ζ3 0 12ζ3 1+2ζ3 2+ζ3 2ζ3 0 1ζ3 0 0 0 0 0 0
81.7.3c1 C 3 3ζ31 3ζ3 1+2ζ3 0 1ζ3 2+ζ3 2ζ3 12ζ3 0 1+ζ3 0 0 0 0 0 0
81.7.3c2 C 3 3ζ3 3ζ31 12ζ3 0 2+ζ3 1ζ3 1+ζ3 1+2ζ3 0 2ζ3 0 0 0 0 0 0
81.7.3d1 C 3 3ζ31 3ζ3 1ζ3 0 2ζ3 1+ζ3 1+2ζ3 2+ζ3 0 12ζ3 0 0 0 0 0 0
81.7.3d2 C 3 3ζ3 3ζ31 2+ζ3 0 1+ζ3 2ζ3 12ζ3 1ζ3 0 1+2ζ3 0 0 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{9} + t x^{8} - 36 x^{7} - 20 t x^{6} + 342 x^{5} + 102 t x^{4} - 900 x^{3} - 84 t x^{2} + 81 x + t$ Copy content Toggle raw display