Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_3 \wr C_3 $ | |
| CHM label : | $[3^{3}]3=3wr3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,9), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 27: $C_3^2:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
9T17 x 2, 27T19, 27T21, 27T27 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(6,7,8)$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,4,5)(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,5,4)(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,5,4)(6,8,7)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,2,9)(3,4,5)(6,8,7)$ |
| $ 3, 3, 3 $ | $3$ | $3$ | $(1,2,9)(3,5,4)(6,8,7)$ |
| $ 3, 3, 3 $ | $9$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 9 $ | $9$ | $9$ | $(1,3,6,2,4,7,9,5,8)$ |
| $ 9 $ | $9$ | $9$ | $(1,3,6,9,5,8,2,4,7)$ |
| $ 3, 3, 3 $ | $9$ | $3$ | $(1,6,3)(2,7,4)(5,9,8)$ |
| $ 9 $ | $9$ | $9$ | $(1,6,4,2,7,5,9,8,3)$ |
| $ 9 $ | $9$ | $9$ | $(1,6,5,9,8,4,2,7,3)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,9,2)(3,5,4)(6,8,7)$ |
Group invariants
| Order: | $81=3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [81, 7] |
| Character table: |
3 4 3 3 3 3 3 3 4 3 3 2 2 2 2 2 2 4
1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 9a 9b 3k 9c 9d 3l
2P 1a 3b 3a 3f 3e 3d 3c 3l 3i 3h 3k 9d 9c 3j 9b 9a 3g
3P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 3g 3l 1a 3g 3l 1a
5P 1a 3b 3a 3f 3e 3d 3c 3l 3i 3h 3k 9d 9c 3j 9b 9a 3g
7P 1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 9a 9b 3k 9c 9d 3l
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 A A A /A /A /A 1
X.3 1 1 1 1 1 1 1 1 1 1 /A /A /A A A A 1
X.4 1 A /A /A 1 1 A 1 A /A 1 A /A 1 A /A 1
X.5 1 /A A A 1 1 /A 1 /A A 1 /A A 1 /A A 1
X.6 1 A /A /A 1 1 A 1 A /A A /A 1 /A 1 A 1
X.7 1 /A A A 1 1 /A 1 /A A /A A 1 A 1 /A 1
X.8 1 A /A /A 1 1 A 1 A /A /A 1 A A /A 1 1
X.9 1 /A A A 1 1 /A 1 /A A A 1 /A /A A 1 1
X.10 3 B /B -C . . C /D -/B -B . . . . . . D
X.11 3 /B B C . . -C D -B -/B . . . . . . /D
X.12 3 C -C -B . . -/B /D B /B . . . . . . D
X.13 3 -C C -/B . . -B D /B B . . . . . . /D
X.14 3 -B -/B B . . /B D -C C . . . . . . /D
X.15 3 -/B -B /B . . B /D C -C . . . . . . D
X.16 3 . . . D /D . 3 . . . . . . . . 3
X.17 3 . . . /D D . 3 . . . . . . . . 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(3)-2*E(3)^2
= (3+Sqrt(-3))/2 = 2+b3
C = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
D = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|