Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $C_3^2:C_8$ | |
| CHM label : | $E(9):8$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,4,5,2,3,8,7), (1,2,9)(3,4,5)(6,7,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 8: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T46, 18T28, 24T81, 36T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 8, 1 $ | $9$ | $8$ | $(2,3,6,7,9,8,5,4)$ |
| $ 8, 1 $ | $9$ | $8$ | $(2,4,5,8,9,7,6,3)$ |
| $ 4, 4, 1 $ | $9$ | $4$ | $(2,5,9,6)(3,4,8,7)$ |
| $ 4, 4, 1 $ | $9$ | $4$ | $(2,6,9,5)(3,7,8,4)$ |
| $ 8, 1 $ | $9$ | $8$ | $(2,7,5,3,9,4,6,8)$ |
| $ 8, 1 $ | $9$ | $8$ | $(2,8,6,4,9,3,5,7)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 39] |
| Character table: |
2 3 3 3 3 3 3 3 3 .
3 2 . . . . . . . 2
1a 8a 8b 4a 4b 8c 8d 2a 3a
2P 1a 4b 4a 2a 2a 4a 4b 1a 3a
3P 1a 8c 8d 4b 4a 8a 8b 2a 1a
5P 1a 8d 8c 4a 4b 8b 8a 2a 3a
7P 1a 8b 8a 4b 4a 8d 8c 2a 3a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1
X.3 1 A -A -1 -1 -A A 1 1
X.4 1 -A A -1 -1 A -A 1 1
X.5 1 B /B A -A -/B -B -1 1
X.6 1 -/B -B -A A B /B -1 1
X.7 1 /B B -A A -B -/B -1 1
X.8 1 -B -/B A -A /B B -1 1
X.9 8 . . . . . . . -1
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)
|