Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $C_3^2:Q_8$ | |
| CHM label : | $M(9)=E(9):Q_{8}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,8,2,4)(3,5,6,7), (1,6,2,3)(4,7,8,5), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T47, 18T35 x 3, 24T82, 36T55Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1 $ | $18$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
| $ 4, 4, 1 $ | $18$ | $4$ | $(2,4,9,7)(3,6,8,5)$ |
| $ 4, 4, 1 $ | $18$ | $4$ | $(2,5,9,6)(3,4,8,7)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 41] |
| Character table: |
2 3 2 2 2 3 .
3 2 . . . . 2
1a 4a 4b 4c 2a 3a
2P 1a 2a 2a 2a 1a 3a
3P 1a 4a 4b 4c 2a 1a
X.1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1
X.3 1 -1 1 -1 1 1
X.4 1 1 -1 -1 1 1
X.5 2 . . . -2 2
X.6 8 . . . . -1
|