Show commands:
Magma
magma: G := TransitiveGroup(9, 14);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3^2:Q_8$ | ||
CHM label: | $M(9)=E(9):Q_{8}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,9)(3,4,5)(6,7,8), (1,8,2,4)(3,5,6,7), (1,6,2,3)(4,7,8,5), (1,4,7)(2,5,8)(3,6,9) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T47, 18T35 x 3, 24T82, 36T55Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 4, 1 $ | $18$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
$ 4, 4, 1 $ | $18$ | $4$ | $(2,4,9,7)(3,6,8,5)$ |
$ 4, 4, 1 $ | $18$ | $4$ | $(2,5,9,6)(3,4,8,7)$ |
$ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
$ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 72.41 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 2 2 3 . 3 2 . . . . 2 1a 4a 4b 4c 2a 3a 2P 1a 2a 2a 2a 1a 3a 3P 1a 4a 4b 4c 2a 1a X.1 1 1 1 1 1 1 X.2 1 -1 -1 1 1 1 X.3 1 -1 1 -1 1 1 X.4 1 1 -1 -1 1 1 X.5 2 . . . -2 2 X.6 8 . . . . -1 |
magma: CharacterTable(G);