Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $C_3^2 : C_6$ | |
| CHM label : | $E(9):6=1/2[3^{2}:2]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,2)(3,6)(4,8)(5,7), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
9T13, 18T20, 18T21, 18T22, 27T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,5,4)(6,7,8)$ |
| $ 6, 2, 1 $ | $9$ | $6$ | $(2,9)(3,6,4,8,5,7)$ |
| $ 6, 2, 1 $ | $9$ | $6$ | $(2,9)(3,7,5,8,4,6)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,7)(2,4,8)(5,6,9)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 5] |
| Character table: |
2 1 1 1 1 1 1 . . . .
3 3 2 2 1 1 1 3 2 2 2
1a 3a 3b 6a 6b 2a 3c 3d 3e 3f
2P 1a 3b 3a 3a 3b 1a 3c 3e 3d 3f
3P 1a 1a 1a 2a 2a 2a 1a 1a 1a 1a
5P 1a 3b 3a 6b 6a 2a 3c 3e 3d 3f
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 1 1 1
X.3 1 A /A -/A -A -1 1 A /A 1
X.4 1 /A A -A -/A -1 1 /A A 1
X.5 1 A /A /A A 1 1 A /A 1
X.6 1 /A A A /A 1 1 /A A 1
X.7 2 2 2 . . . 2 -1 -1 -1
X.8 2 B /B . . . 2 -/A -A -1
X.9 2 /B B . . . 2 -A -/A -1
X.10 6 . . . . . -3 . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|