Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $(C_9:C_3):C_2$ | |
| CHM label : | $[3^{2}]S(3)_{6}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,7)(2,8,5), (1,2,3,4,5,6,7,8,9), (1,8)(2,7)(3,6)(4,5) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
18T18, 27T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 2, 1 $ | $9$ | $6$ | $(2,3,5,9,8,6)(4,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(2,5,8)(3,9,6)$ |
| $ 6, 2, 1 $ | $9$ | $6$ | $(2,6,8,9,5,3)(4,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(2,8,5)(3,6,9)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 9 $ | $6$ | $9$ | $(1,2,3,4,5,6,7,8,9)$ |
| $ 9 $ | $6$ | $9$ | $(1,2,6,4,5,9,7,8,3)$ |
| $ 9 $ | $6$ | $9$ | $(1,2,9,4,5,3,7,8,6)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 6] |
| Character table: |
2 1 1 1 1 1 1 . . . .
3 3 1 2 1 2 1 2 2 2 3
1a 6a 3a 6b 3b 2a 9a 9b 9c 3c
2P 1a 3a 3b 3b 3a 1a 9a 9c 9b 3c
3P 1a 2a 1a 2a 1a 2a 3c 3c 3c 1a
5P 1a 6b 3b 6a 3a 2a 9a 9c 9b 3c
7P 1a 6a 3a 6b 3b 2a 9a 9b 9c 3c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 1 1
X.3 1 A -/A /A -A -1 1 -/A -A 1
X.4 1 /A -A A -/A -1 1 -A -/A 1
X.5 1 -/A -A -A -/A 1 1 -A -/A 1
X.6 1 -A -/A -/A -A 1 1 -/A -A 1
X.7 2 . 2 . 2 . -1 -1 -1 2
X.8 2 . B . /B . -1 A /A 2
X.9 2 . /B . B . -1 /A A 2
X.10 6 . . . . . . . . -3
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|