Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $A_4$ | |
| CHM label : | $A_{4}(6) = [2^{2}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,5), (1,3,5)(2,4,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Low degree siblings
4T4, 12T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,5)(3,6)$ |
| $ 3, 3 $ | $4$ | $3$ | $(1,2,3)(4,5,6)$ |
| $ 3, 3 $ | $4$ | $3$ | $(1,3,2)(4,6,5)$ |
Group invariants
| Order: | $12=2^{2} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [12, 3] |
| Character table: |
2 2 2 . .
3 1 . 1 1
1a 2a 3a 3b
2P 1a 1a 3b 3a
3P 1a 2a 1a 1a
X.1 1 1 1 1
X.2 1 1 A /A
X.3 1 1 /A A
X.4 3 -1 . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|