Show commands: Magma
Group invariants
Abstract group: | $\PSL(2,5)$ |
| |
Order: | $60=2^{2} \cdot 3 \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $6$ |
| |
Transitive number $t$: | $12$ |
| |
CHM label: | $L(6) = PSL(2,5) = A_{5}(6)$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,4)(5,6)$, $(1,2,3,4,6)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
5T4, 10T7, 12T33, 15T5, 20T15, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{2}$ | $15$ | $2$ | $2$ | $(1,2)(3,6)$ |
3A | $3^{2}$ | $20$ | $3$ | $4$ | $(1,4,2)(3,6,5)$ |
5A1 | $5,1$ | $12$ | $5$ | $4$ | $(1,4,5,2,6)$ |
5A2 | $5,1$ | $12$ | $5$ | $4$ | $(1,5,6,4,2)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 3A | 5A1 | 5A2 | ||
Size | 1 | 15 | 20 | 12 | 12 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | |
Type | ||||||
60.5.1a | R | |||||
60.5.3a1 | R | |||||
60.5.3a2 | R | |||||
60.5.4a | R | |||||
60.5.5a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{6} + 2 x^{4} + t x^{3} + 5 x^{2} + 6 x + 1$
|