Properties

Label 6T10
6T10 1 4 1->4 5 1->5 2 2->1 2->4 2->4 3 6 3->6 4->5 4->6 5->2 6->2
Degree $6$
Order $36$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_3^2:C_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(6, 10);
 

Group invariants

Abstract group:  $C_3^2:C_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $36=2^{2} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $6$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $10$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $F_{36}(6) = 1/2[S(3)^{2}]2$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,4,5,2)(3,6)$, $(2,4,6)$, $(1,5)(2,4)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Low degree siblings

6T10, 9T9, 12T17 x 2, 18T10, 36T14

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{6}$ $1$ $1$ $0$ $()$
2A $2^{2},1^{2}$ $9$ $2$ $2$ $(1,3)(2,4)$
3A $3,1^{3}$ $4$ $3$ $2$ $(1,3,5)$
3B $3^{2}$ $4$ $3$ $4$ $(1,3,5)(2,4,6)$
4A1 $4,2$ $9$ $4$ $4$ $(1,2,3,4)(5,6)$
4A-1 $4,2$ $9$ $4$ $4$ $(1,4,3,2)(5,6)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A 3B 4A1 4A-1
Size 1 9 4 4 9 9
2 P 1A 1A 3A 3B 2A 2A
3 P 1A 2A 1A 1A 4A-1 4A1
Type
36.9.1a R 1 1 1 1 1 1
36.9.1b R 1 1 1 1 1 1
36.9.1c1 C 1 1 1 1 i i
36.9.1c2 C 1 1 1 1 i i
36.9.4a R 4 0 2 1 0 0
36.9.4b R 4 0 1 2 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{6} + 6 x^{4} + t x^{3} + 9 x^{2} + 3 t x - 4$ Copy content Toggle raw display