Show commands:
Magma
magma: G := TransitiveGroup(6, 10);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3^2:C_4$ | ||
CHM label: | $F_{36}(6) = 1/2[S(3)^{2}]2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,4,5,2)(3,6), (2,4,6), (1,5)(2,4) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Low degree siblings
6T10, 9T9, 12T17 x 2, 18T10, 36T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{2}$ | $9$ | $2$ | $2$ | $(1,5)(2,4)$ |
3A | $3^{2}$ | $4$ | $3$ | $4$ | $(1,5,3)(2,6,4)$ |
3B | $3,1^{3}$ | $4$ | $3$ | $2$ | $(1,3,5)$ |
4A1 | $4,2$ | $9$ | $4$ | $4$ | $(1,4,5,2)(3,6)$ |
4A-1 | $4,2$ | $9$ | $4$ | $4$ | $(1,2,5,4)(3,6)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.9 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 3B | 4A1 | 4A-1 | ||
Size | 1 | 9 | 4 | 4 | 9 | 9 | |
2 P | 1A | 1A | 3A | 3B | 2A | 2A | |
3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | |
Type | |||||||
36.9.1a | R | ||||||
36.9.1b | R | ||||||
36.9.1c1 | C | ||||||
36.9.1c2 | C | ||||||
36.9.4a | R | ||||||
36.9.4b | R |
magma: CharacterTable(G);