Show commands:
Magma
This is the smallest instance of a non-solvable Galois group, implying that the general quintic cannot be solvable in radicals and motivating the creation of Galois theory.
magma: G := TransitiveGroup(5, 4);
Group action invariants
Degree $n$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_5$ | ||
CHM label: | $A5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3), (3,4,5) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
6T12, 10T7, 12T33, 15T5, 20T15, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{5}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1$ | $15$ | $2$ | $2$ | $(1,2)(3,4)$ |
3A | $3,1^{2}$ | $20$ | $3$ | $2$ | $(1,2,3)$ |
5A1 | $5$ | $12$ | $5$ | $4$ | $(1,3,4,5,2)$ |
5A2 | $5$ | $12$ | $5$ | $4$ | $(1,2,3,4,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 5A1 | 5A2 | ||
Size | 1 | 15 | 20 | 12 | 12 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | |
Type | ||||||
60.5.1a | R | |||||
60.5.3a1 | R | |||||
60.5.3a2 | R | |||||
60.5.4a | R | |||||
60.5.5a | R |
magma: CharacterTable(G);