Properties

Label 5T4
Degree $5$
Order $60$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $A_5$

Related objects

Downloads

Learn more

Show commands: Magma

This is the smallest instance of a non-solvable Galois group, implying that the general quintic cannot be solvable in radicals and motivating the creation of Galois theory.

magma: G := TransitiveGroup(5, 4);
 

Group action invariants

Degree $n$:  $5$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_5$
CHM label:   $A5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3), (3,4,5)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

6T12, 10T7, 12T33, 15T5, 20T15, 30T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 1, 1 $ $20$ $3$ $(3,4,5)$
$ 2, 2, 1 $ $15$ $2$ $(2,3)(4,5)$
$ 5 $ $12$ $5$ $(1,2,3,4,5)$
$ 5 $ $12$ $5$ $(1,2,3,5,4)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $60=2^{2} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  60.5
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 5A1 5A2
Size 1 15 20 12 12
2 P 1A 1A 3A 5A2 5A1
3 P 1A 2A 1A 5A2 5A1
5 P 1A 2A 3A 1A 1A
Type
60.5.1a R 1 1 1 1 1
60.5.3a1 R 3 1 0 ζ51ζ5 ζ52ζ52
60.5.3a2 R 3 1 0 ζ52ζ52 ζ51ζ5
60.5.4a R 4 0 1 1 1
60.5.5a R 5 1 1 0 0

magma: CharacterTable(G);