Properties

Label 5T3
Degree $5$
Order $20$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $F_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(5, 3);
 

Group action invariants

Degree $n$:  $5$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $3$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $F_5$
CHM label:   $F(5) = 5:4$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5), (1,2,4,3)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

10T4, 20T5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{5}$ $1$ $1$ $0$ $()$
2A $2^{2},1$ $5$ $2$ $2$ $(2,5)(3,4)$
4A1 $4,1$ $5$ $4$ $3$ $(2,3,5,4)$
4A-1 $4,1$ $5$ $4$ $3$ $(2,4,5,3)$
5A $5$ $4$ $5$ $4$ $(1,2,3,4,5)$

Malle's constant $a(G)$:     $1/2$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $20=2^{2} \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  20.3
magma: IdentifyGroup(G);
 
Character table:

1A 2A 4A1 4A-1 5A
Size 1 5 5 5 4
2 P 1A 1A 2A 2A 5A
5 P 1A 2A 4A1 4A-1 1A
Type
20.3.1a R 1 1 1 1 1
20.3.1b R 1 1 1 1 1
20.3.1c1 C 1 1 i i 1
20.3.1c2 C 1 1 i i 1
20.3.4a R 4 0 0 0 1

magma: CharacterTable(G);