Show commands: Magma
Group invariants
Abstract group: | $F_5$ |
| |
Order: | $20=2^{2} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $5$ |
| |
Transitive number $t$: | $3$ |
| |
CHM label: | $F(5) = 5:4$ | ||
Parity: | $-1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,3,4,5)$, $(1,2,4,3)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
10T4, 20T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{5}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1$ | $5$ | $2$ | $2$ | $(1,4)(2,3)$ |
4A1 | $4,1$ | $5$ | $4$ | $3$ | $(1,2,4,3)$ |
4A-1 | $4,1$ | $5$ | $4$ | $3$ | $(1,3,4,2)$ |
5A | $5$ | $4$ | $5$ | $4$ | $(1,2,3,4,5)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 4A1 | 4A-1 | 5A | ||
Size | 1 | 5 | 5 | 5 | 4 | |
2 P | 1A | 1A | 2A | 2A | 5A | |
5 P | 1A | 2A | 4A1 | 4A-1 | 1A | |
Type | ||||||
20.3.1a | R | |||||
20.3.1b | R | |||||
20.3.1c1 | C | |||||
20.3.1c2 | C | |||||
20.3.4a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{5} + \left(\left(s^{2} + 4\right) t + \left(-2 s - 17/4\right)\right) x^{4} + \left(\left(3 s^{2} + 12\right) t + \left(s^{2} + 13/2 s + 5\right)\right) x^{3} + \left(\left(-s^{2} - 4\right) t + \left(-11/2 s + 8\right)\right) x^{2} + \left(s - 6\right) x + 1$
|
The polynomial $f_{1}$ is generic for any base field $K$ of characteristic $\neq$ 2 | |
$f_{ 2 } =$ |
$x^{5}+10 x^{3}+5 t x^{2}-15 x+t^{2}-t+16$
|