Show commands:
Magma
magma: G := TransitiveGroup(5, 3);
Group action invariants
Degree $n$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $F_5$ | ||
CHM label: | $F(5) = 5:4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5), (1,2,4,3) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
10T4, 20T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{5}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1$ | $5$ | $2$ | $2$ | $(2,5)(3,4)$ |
4A1 | $4,1$ | $5$ | $4$ | $3$ | $(2,3,5,4)$ |
4A-1 | $4,1$ | $5$ | $4$ | $3$ | $(2,4,5,3)$ |
5A | $5$ | $4$ | $5$ | $4$ | $(1,2,3,4,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $20=2^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 20.3 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 4A1 | 4A-1 | 5A | ||
Size | 1 | 5 | 5 | 5 | 4 | |
2 P | 1A | 1A | 2A | 2A | 5A | |
5 P | 1A | 2A | 4A1 | 4A-1 | 1A | |
Type | ||||||
20.3.1a | R | |||||
20.3.1b | R | |||||
20.3.1c1 | C | |||||
20.3.1c2 | C | |||||
20.3.4a | R |
magma: CharacterTable(G);