Properties

Label 5T3
5T3 1 2 1->2 1->2 3 2->3 4 2->4 3->1 3->4 4->3 5 4->5 5->1
Degree $5$
Order $20$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $F_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(5, 3);
 

Group invariants

Abstract group:  $F_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $20=2^{2} \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $5$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $3$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $F(5) = 5:4$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5)$, $(1,2,4,3)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

10T4, 20T5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{5}$ $1$ $1$ $0$ $()$
2A $2^{2},1$ $5$ $2$ $2$ $(1,4)(2,3)$
4A1 $4,1$ $5$ $4$ $3$ $(1,2,4,3)$
4A-1 $4,1$ $5$ $4$ $3$ $(1,3,4,2)$
5A $5$ $4$ $5$ $4$ $(1,2,3,4,5)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 5A
Size 1 5 5 5 4
2 P 1A 1A 2A 2A 5A
5 P 1A 2A 4A1 4A-1 1A
Type
20.3.1a R 1 1 1 1 1
20.3.1b R 1 1 1 1 1
20.3.1c1 C 1 1 i i 1
20.3.1c2 C 1 1 i i 1
20.3.4a R 4 0 0 0 1

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{5} + \left(\left(s^{2} + 4\right) t + \left(-2 s - 17/4\right)\right) x^{4} + \left(\left(3 s^{2} + 12\right) t + \left(s^{2} + 13/2 s + 5\right)\right) x^{3} + \left(\left(-s^{2} - 4\right) t + \left(-11/2 s + 8\right)\right) x^{2} + \left(s - 6\right) x + 1$ Copy content Toggle raw display
The polynomial $f_{1}$ is generic for any base field $K$ of characteristic $\neq$ 2
$f_{ 2 } =$ $x^{5}+10 x^{3}+5 t x^{2}-15 x+t^{2}-t+16$ Copy content Toggle raw display