Properties

Label 4T4
Degree $4$
Order $12$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $A_4$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(4, 4);
 

Group action invariants

Degree $n$:  $4$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_4$
CHM label:   $A4$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (2,3,4), (1,3,4)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$3$:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Low degree siblings

6T4, 12T4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrder IndexRepresentative
1A $1^{4}$ $1$ $1$ $0$ $()$
2A $2^{2}$ $3$ $2$ $2$ $(1,2)(3,4)$
3A1 $3,1$ $4$ $3$ $2$ $(1,2,3)$
3A-1 $3,1$ $4$ $3$ $2$ $(1,3,2)$

magma: ConjugacyClasses(G);
 

Malle's constant $a(G)$:     $1/2$

Group invariants

Order:  $12=2^{2} \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  12.3
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1
Size 1 3 4 4
2 P 1A 1A 3A-1 3A1
3 P 1A 2A 1A 1A
Type
12.3.1a R 1 1 1 1
12.3.1b1 C 1 1 ζ31 ζ3
12.3.1b2 C 1 1 ζ3 ζ31
12.3.3a R 3 1 0 0

magma: CharacterTable(G);