Show commands: Magma
Group invariants
| Abstract group: | $A_4$ |
| |
| Order: | $12=2^{2} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $4$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $A4$ | ||
| Parity: | $1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(2,3,4)$, $(1,3,4)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Low degree siblings
6T4, 12T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{2}$ | $3$ | $2$ | $2$ | $(1,2)(3,4)$ |
| 3A1 | $3,1$ | $4$ | $3$ | $2$ | $(2,4,3)$ |
| 3A-1 | $3,1$ | $4$ | $3$ | $2$ | $(2,3,4)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 3A1 | 3A-1 | ||
| Size | 1 | 3 | 4 | 4 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | |
| 3 P | 1A | 2A | 1A | 1A | |
| Type | |||||
| 12.3.1a | R | ||||
| 12.3.1b1 | C | ||||
| 12.3.1b2 | C | ||||
| 12.3.3a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{4}+\left(\left(-6 s^{3}+\left(6 t^{3}+54 t^{2}+162 t+324\right)\right)/\left(s^{3}+\left(-3 t^{2}-9 t-27\right) s+\left(2 t^{3}+9 t^{2}+27 t+27\right)\right)\right) x^{2}-8 x+\left(\left(-3 s^{6}+\left(36 t^{2}+108 t+324\right) s^{4}+\left(-30 t^{3}-270 t^{2}-810 t-1620\right) s^{3}+\left(-36 t^{5}-108 t^{4}-324 t^{3}+972 t^{2}+2916 t+8748\right) s+\left(33 t^{6}+270 t^{5}+1539 t^{4}+5022 t^{3}+12393 t^{2}+17496 t+17496\right)\right)/\left(s^{6}+\left(-6 t^{2}-18 t-54\right) s^{4}+\left(4 t^{3}+18 t^{2}+54 t+54\right) s^{3}+\left(9 t^{4}+54 t^{3}+243 t^{2}+486 t+729\right) s^{2}+\left(-12 t^{5}-90 t^{4}-432 t^{3}-1134 t^{2}-1944 t-1458\right) s+\left(4 t^{6}+36 t^{5}+189 t^{4}+594 t^{3}+1215 t^{2}+1458 t+729\right)\right)\right)$
|
| The polynomial $f_{1}$ is generic for any base field $K$ of characteristic $\neq$ 2,3 |