Show commands:
Magma
magma: G := TransitiveGroup(4, 4);
Group action invariants
Degree $n$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_4$ | ||
CHM label: | $A4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (2,3,4), (1,3,4) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Low degree siblings
6T4, 12T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2}$ | $3$ | $2$ | $2$ | $(1,2)(3,4)$ |
3A1 | $3,1$ | $4$ | $3$ | $2$ | $(1,2,3)$ |
3A-1 | $3,1$ | $4$ | $3$ | $2$ | $(1,3,2)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/2$
Group invariants
Order: | $12=2^{2} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 12.3 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | ||
Size | 1 | 3 | 4 | 4 | |
2 P | 1A | 1A | 3A-1 | 3A1 | |
3 P | 1A | 2A | 1A | 1A | |
Type | |||||
12.3.1a | R | ||||
12.3.1b1 | C | ||||
12.3.1b2 | C | ||||
12.3.3a | R |
magma: CharacterTable(G);