Group action invariants
| Degree $n$ : | $47$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $A_{47}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 62,494 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $129311620755584090321482177576805989984598816194560000000000=2^{41} \cdot 3^{21} \cdot 5^{10} \cdot 7^{6} \cdot 11^{4} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23^{2} \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |