# Properties

 Label 47T5 Degree $47$ Order $1.293\times 10^{59}$ Cyclic no Abelian no Solvable no Primitive yes $p$-group no Group: $A_{47}$

Show commands: Magma

magma: G := TransitiveGroup(47, 5);

## Group action invariants

 Degree $n$: $47$ magma: t, n := TransitiveGroupIdentification(G); n; Transitive number $t$: $5$ magma: t, n := TransitiveGroupIdentification(G); t; Group: $A_{47}$ Parity: $1$ magma: IsEven(G); Primitive: yes magma: IsPrimitive(G); magma: NilpotencyClass(G); $\card{\Aut(F/K)}$: $1$ magma: Order(Centralizer(SymmetricGroup(n), G)); Generators: (1,2,3), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47) magma: Generators(G);

## Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

## Subfields

Prime degree - none

## Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

## Conjugacy classes

The 62494 conjugacy class representatives for $A_{47}$ are not computed

magma: ConjugacyClasses(G);

## Group invariants

 Order: $129311620755584090321482177576805989984598816194560000000000=2^{41} \cdot 3^{21} \cdot 5^{10} \cdot 7^{6} \cdot 11^{4} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23^{2} \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47$ magma: Order(G); Cyclic: no magma: IsCyclic(G); Abelian: no magma: IsAbelian(G); Solvable: no magma: IsSolvable(G); Nilpotency class: not nilpotent Label: 129311620755584090321482177576805989984598816194560000000000.a magma: IdentifyGroup(G); Character table: not computed

magma: CharacterTable(G);