Label 46T7
Degree $46$
Order $1058$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $46$
Transitive number $t$:  $7$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $23$
Generators:  (1,43,10,32,19,44,5,33,14,45,23,34,9,46,18,35,4,24,13,36,22,25,8,37,17,26,3,38,12,27,21,39,7,28,16,40,2,29,11,41,20,30,6,42,15,31), (1,5,9,13,17,21,2,6,10,14,18,22,3,7,11,15,19,23,4,8,12,16,20)(24,35,46,34,45,33,44,32,43,31,42,30,41,29,40,28,39,27,38,26,37,25,36)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$23$:  $C_{23}$
$46$:  $D_{23}$, $C_{46}$

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 23: None

Low degree siblings

46T7 x 10

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 299 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1058=2 \cdot 23^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  [1058, 3]
Character table: not available.