Label 46T46
Degree $46$
Order $5.422\times 10^{28}$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $46$
Transitive number $t$:  $46$
Parity:  $1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $2$
Generators:  (1,37,3,25,15)(2,38,4,26,16)(5,18,45,10,40,34,11,7,6,17,46,9,39,33,12,8)(13,14)(19,28,36,43)(20,27,35,44)(21,24,22,23)(29,32,30,31), (1,23,6)(2,24,5)(3,38,45,29,9,42,12,35,31,25,14,18,43,7,33,27,40,19,15)(4,37,46,30,10,41,11,36,32,26,13,17,44,8,34,28,39,20,16)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$12926008369442488320000$:  $A_{23}$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 23: $A_{23}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 17,144 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $54215608607986106530529280000=2^{40} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$
Cyclic:  no
Abelian:  no
Solvable:  no
GAP id:  not available
Character table: not available.