Label 46T45
Order \(51704033477769953280000\)
n \(46\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $46$
Transitive number $t$ :  $45$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,40)(2,39)(3,13,29,23,17,25,31,4,14,30,24,18,26,32)(5,15,45,7,41,28,10,33,36,44,21,12,38,20)(6,16,46,8,42,27,9,34,35,43,22,11,37,19), (1,44,30)(2,43,29)(3,10,27,19,17,24,26)(4,9,28,20,18,23,25)(5,40,8,41,16,45,21,38,14,34,11,31)(6,39,7,42,15,46,22,37,13,33,12,32)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
25852016738884976640000:  $S_{23}$

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 23: $S_{23}$

Low degree siblings


Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 2,510 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $51704033477769953280000=2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.