Label 46T38
Degree $46$
Order $20891566080$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $46$
Transitive number $t$:  $38$
Parity:  $1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $2$
Generators:  (1,18,37)(2,17,38)(3,11,22,4,12,21)(5,7,14,6,8,13)(9,34,35)(10,33,36)(15,44,39)(16,43,40)(19,46,25)(20,45,26)(27,28)(29,30), (1,39,34,17,27,21,36,4,12,10,46,23,41,16,20,44,6,13,8,37,31,25,29)(2,40,33,18,28,22,35,3,11,9,45,24,42,15,19,43,5,14,7,38,32,26,30)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$10200960$:  $M_{23}$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 23: $M_{23}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $20891566080=2^{18} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
Cyclic:  no
Abelian:  no
Solvable:  no
GAP id:  not available
Character table: not available.