Label 46T36
Degree $46$
Order $2122317824$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $46$
Transitive number $t$:  $36$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $2$
Generators:  (1,25,28,32,40,10,42,14,3,29,36)(2,26,27,31,39,9,41,13,4,30,35)(5,34,44,18,11,45,21,20,15,8,38,6,33,43,17,12,46,22,19,16,7,37)(23,24), (1,26,23,28,20,36,4,22,31,11,6,18,40,41,37,45,29,16,43,34,8,14)(2,25,24,27,19,35,3,21,32,12,5,17,39,42,38,46,30,15,44,33,7,13)(9,10)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$11$:  $C_{11}$
$22$:  22T1
$506$:  $F_{23}$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 23: $F_{23}$

Low degree siblings


Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 8,624 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2122317824=2^{23} \cdot 11 \cdot 23$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.