Label 46T34
Order \(2122317824\)
n \(46\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $46$
Transitive number $t$ :  $34$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,34,12,29,31,22,25,5,14,20,35)(2,33,11,30,32,21,26,6,13,19,36)(3,24,15,9,40,28,41,17,45,43,7,4,23,16,10,39,27,42,18,46,44,8), (1,32,24,20,17,39,28,21,42,6,33)(2,31,23,19,18,40,27,22,41,5,34)(3,10,36,25,43,30,45,7,11,13,37,4,9,35,26,44,29,46,8,12,14,38)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
11:  $C_{11}$
22:  22T1
253:  $C_{23}:C_{11}$
506:  46T4
518144:  46T25 x 2
1036288:  46T26 x 2
1061158912:  46T33

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 23: $C_{23}:C_{11}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 33,248 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2122317824=2^{23} \cdot 11 \cdot 23$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.