Label 46T21
Degree $46$
Order $128018$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $46$
Transitive number $t$:  $21$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,40,4,24,20,46,21,33,11,25,19,36,8,41,3,37,7,31,13,45,22,43)(2,27,17,39,5,34,10,38,6,44,23,30,14,32,12,35,9,28,16,29,15,42)(18,26), (1,29,19,25,5,46,21,45,6,33,10,27,12,24,13,34,2,39,8,30,11,37)(3,26,20,35,17,28,4,36,9,40,23,42,7,43,22,32,18,38,16,41,15,31)(14,44)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$11$:  $C_{11}$
$22$:  $D_{11}$, 22T1
$242$:  22T7

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 23: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $128018=2 \cdot 11^{2} \cdot 23^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.