Show commands: Magma
Group invariants
| Abstract group: | $C_5\times D_9$ |
| |
| Order: | $90=2 \cdot 3^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $9$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $5$ |
| |
| Generators: | $(1,41,20,13,37,32,11,6,28,22)(2,42,21,14,39,33,12,4,29,24)(3,40,19,15,38,31,10,5,30,23)(7,17,26,36,45,9,16,27,35,43)(8,18,25,34,44)$, $(1,12,20,29,37,2,11,21,28,39)(3,10,19,30,38)(4,44,24,18,42,34,14,8,33,25)(5,43,23,17,40,36,15,9,31,27)(6,45,22,16,41,35,13,7,32,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $6$: $S_3$ $10$: $C_{10}$ $18$: $D_{9}$ $30$: $S_3 \times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $C_5$
Degree 9: $D_{9}$
Degree 15: $S_3 \times C_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{20},1^{5}$ | $9$ | $2$ | $20$ | $( 2, 3)( 4,35)( 5,34)( 6,36)( 7,24)( 8,23)( 9,22)(10,12)(13,43)(14,45)(15,44)(16,33)(17,32)(18,31)(19,21)(25,40)(26,42)(27,41)(29,30)(38,39)$ |
| 3A | $3^{15}$ | $2$ | $3$ | $30$ | $( 1, 2, 3)( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,27,26)(28,29,30)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)$ |
| 5A1 | $5^{9}$ | $1$ | $5$ | $36$ | $( 1,37,28,20,11)( 2,39,29,21,12)( 3,38,30,19,10)( 4,42,33,24,14)( 5,40,31,23,15)( 6,41,32,22,13)( 7,45,35,26,16)( 8,44,34,25,18)( 9,43,36,27,17)$ |
| 5A-1 | $5^{9}$ | $1$ | $5$ | $36$ | $( 1,11,20,28,37)( 2,12,21,29,39)( 3,10,19,30,38)( 4,14,24,33,42)( 5,15,23,31,40)( 6,13,22,32,41)( 7,16,26,35,45)( 8,18,25,34,44)( 9,17,27,36,43)$ |
| 5A2 | $5^{9}$ | $1$ | $5$ | $36$ | $( 1,28,11,37,20)( 2,29,12,39,21)( 3,30,10,38,19)( 4,33,14,42,24)( 5,31,15,40,23)( 6,32,13,41,22)( 7,35,16,45,26)( 8,34,18,44,25)( 9,36,17,43,27)$ |
| 5A-2 | $5^{9}$ | $1$ | $5$ | $36$ | $( 1,20,37,11,28)( 2,21,39,12,29)( 3,19,38,10,30)( 4,24,42,14,33)( 5,23,40,15,31)( 6,22,41,13,32)( 7,26,45,16,35)( 8,25,44,18,34)( 9,27,43,17,36)$ |
| 9A1 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,31,17, 2,33,16, 3,32,18)( 4,35,19, 6,34,20, 5,36,21)( 7,38,22, 8,37,23, 9,39,24)(10,41,25,11,40,27,12,42,26)(13,44,28,15,43,29,14,45,30)$ |
| 9A2 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,17,33, 3,18,31, 2,16,32)( 4,19,34, 5,21,35, 6,20,36)( 7,22,37, 9,24,38, 8,23,39)(10,25,40,12,26,41,11,27,42)(13,28,43,14,30,44,15,29,45)$ |
| 9A4 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,33,18, 2,32,17, 3,31,16)( 4,34,21, 6,36,19, 5,35,20)( 7,37,24, 8,39,22, 9,38,23)(10,40,26,11,42,25,12,41,27)(13,43,30,15,45,28,14,44,29)$ |
| 10A1 | $10^{4},5$ | $9$ | $10$ | $40$ | $( 1,20,37,11,28)( 2,19,39,10,29, 3,21,38,12,30)( 4, 7,42,45,33,35,24,26,14,16)( 5, 8,40,44,31,34,23,25,15,18)( 6, 9,41,43,32,36,22,27,13,17)$ |
| 10A-1 | $10^{4},5$ | $9$ | $10$ | $40$ | $( 1,43,11, 9,20,17,28,27,37,36)( 2,44,12, 8,21,18,29,25,39,34)( 3,45,10, 7,19,16,30,26,38,35)( 4,32,14,41,24, 6,33,13,42,22)( 5,31,15,40,23)$ |
| 10A3 | $10^{4},5$ | $9$ | $10$ | $40$ | $( 1,42,20,14,37,33,11, 4,28,24)( 2,40,21,15,39,31,12, 5,29,23)( 3,41,19,13,38,32,10, 6,30,22)( 7,18,26,34,45, 8,16,25,35,44)( 9,17,27,36,43)$ |
| 10A-3 | $10^{4},5$ | $9$ | $10$ | $40$ | $( 1,38,28,19,11, 3,37,30,20,10)( 2,39,29,21,12)( 4,27,33, 9,14,36,42,17,24,43)( 5,26,31, 7,15,35,40,16,23,45)( 6,25,32, 8,13,34,41,18,22,44)$ |
| 15A1 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,38,29,20,10, 2,37,30,21,11, 3,39,28,19,12)( 4,40,32,24,15, 6,42,31,22,14, 5,41,33,23,13)( 7,43,34,26,17, 8,45,36,25,16, 9,44,35,27,18)$ |
| 15A-1 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,12,19,28,39, 3,11,21,30,37, 2,10,20,29,38)( 4,13,23,33,41, 5,14,22,31,42, 6,15,24,32,40)( 7,18,27,35,44, 9,16,25,36,45, 8,17,26,34,43)$ |
| 15A2 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,29,10,37,21, 3,28,12,38,20, 2,30,11,39,19)( 4,32,15,42,22, 5,33,13,40,24, 6,31,14,41,23)( 7,34,17,45,25, 9,35,18,43,26, 8,36,16,44,27)$ |
| 15A-2 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,19,39,11,30, 2,20,38,12,28, 3,21,37,10,29)( 4,23,41,14,31, 6,24,40,13,33, 5,22,42,15,32)( 7,27,44,16,36, 8,26,43,18,35, 9,25,45,17,34)$ |
| 45A1 | $45$ | $2$ | $45$ | $44$ | $( 1,43,42,38,34,31,29,26,22,20,17,14,10, 8, 5, 2,45,41,37,36,33,30,25,23,21,16,13,11, 9, 4, 3,44,40,39,35,32,28,27,24,19,18,15,12, 7, 6)$ |
| 45A-1 | $45$ | $2$ | $45$ | $44$ | $( 1,36,24,10,44,31,21, 7,41,28,17, 4,38,25,15, 2,35,22,11,43,33,19, 8,40,29,16, 6,37,27,14, 3,34,23,12,45,32,20, 9,42,30,18, 5,39,26,13)$ |
| 45A2 | $45$ | $2$ | $45$ | $44$ | $( 1,42,34,29,22,17,10, 5,45,37,33,25,21,13, 9, 3,40,35,28,24,18,12, 6,43,38,31,26,20,14, 8, 2,41,36,30,23,16,11, 4,44,39,32,27,19,15, 7)$ |
| 45A-2 | $45$ | $2$ | $45$ | $44$ | $( 1,24,44,21,41,17,38,15,35,11,33, 8,29, 6,27, 3,23,45,20,42,18,39,13,36,10,31, 7,28, 4,25, 2,22,43,19,40,16,37,14,34,12,32, 9,30, 5,26)$ |
| 45A4 | $45$ | $2$ | $45$ | $44$ | $( 1,34,22,10,45,33,21, 9,40,28,18, 6,38,26,14, 2,36,23,11,44,32,19, 7,42,29,17, 5,37,25,13, 3,35,24,12,43,31,20, 8,41,30,16, 4,39,27,15)$ |
| 45A-4 | $45$ | $2$ | $45$ | $44$ | $( 1,44,41,38,35,33,29,27,23,20,18,13,10, 7, 4, 2,43,40,37,34,32,30,26,24,21,17,15,11, 8, 6, 3,45,42,39,36,31,28,25,22,19,16,14,12, 9, 5)$ |
| 45A8 | $45$ | $2$ | $45$ | $44$ | $( 1, 9,14,19,25,31,39,45, 6,11,17,24,30,34,40, 2, 7,13,20,27,33,38,44, 5,12,16,22,28,36,42, 3, 8,15,21,26,32,37,43, 4,10,18,23,29,35,41)$ |
| 45A-8 | $45$ | $2$ | $45$ | $44$ | $( 1,27, 4,30, 8,31,12,35,13,37,17,42,19,44,23, 2,26, 6,28, 9,33,10,34,15,39,16,41,20,43,24, 3,25, 5,29, 7,32,11,36,14,38,18,40,21,45,22)$ |
| 45A11 | $45$ | $2$ | $45$ | $44$ | $( 1,14,25,39, 6,17,30,40, 7,20,33,44,12,22,36, 3,15,26,37, 4,18,29,41, 9,19,31,45,11,24,34, 2,13,27,38, 5,16,28,42, 8,21,32,43,10,23,35)$ |
| 45A-11 | $45$ | $2$ | $45$ | $44$ | $( 1, 4, 8,12,13,17,19,23,26,28,33,34,39,41,43, 3, 5, 7,11,14,18,21,22,27,30,31,35,37,42,44, 2, 6, 9,10,15,16,20,24,25,29,32,36,38,40,45)$ |
| 45A13 | $45$ | $2$ | $45$ | $44$ | $( 1, 8,13,19,26,33,39,43, 5,11,18,22,30,35,42, 2, 9,15,20,25,32,38,45, 4,12,17,23,28,34,41, 3, 7,14,21,27,31,37,44, 6,10,16,24,29,36,40)$ |
| 45A-13 | $45$ | $2$ | $45$ | $44$ | $( 1,25, 6,30, 7,33,12,36,15,37,18,41,19,45,24, 2,27, 5,28, 8,32,10,35,14,39,17,40,20,44,22, 3,26, 4,29, 9,31,11,34,13,38,16,42,21,43,23)$ |
Malle's constant $a(G)$: $1/20$
Character table
| 1A | 2A | 3A | 5A1 | 5A-1 | 5A2 | 5A-2 | 9A1 | 9A2 | 9A4 | 10A1 | 10A-1 | 10A3 | 10A-3 | 15A1 | 15A-1 | 15A2 | 15A-2 | 45A1 | 45A-1 | 45A2 | 45A-2 | 45A4 | 45A-4 | 45A8 | 45A-8 | 45A11 | 45A-11 | 45A13 | 45A-13 | ||
| Size | 1 | 9 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 3A | 5A2 | 5A-2 | 5A-1 | 5A1 | 9A2 | 9A4 | 9A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 15A2 | 15A-2 | 15A-1 | 15A1 | 45A2 | 45A-2 | 45A4 | 45A-4 | 45A8 | 45A-8 | 45A11 | 45A-11 | 45A-13 | 45A13 | 45A1 | 45A-1 | |
| 3 P | 1A | 2A | 1A | 5A-2 | 5A2 | 5A1 | 5A-1 | 3A | 3A | 3A | 10A3 | 10A-3 | 10A-1 | 10A1 | 5A-2 | 5A2 | 5A1 | 5A-1 | 15A1 | 15A-1 | 15A2 | 15A-2 | 15A-1 | 15A1 | 15A-2 | 15A2 | 15A1 | 15A-1 | 15A-2 | 15A2 | |
| 5 P | 1A | 2A | 3A | 1A | 1A | 1A | 1A | 9A4 | 9A1 | 9A2 | 2A | 2A | 2A | 2A | 3A | 3A | 3A | 3A | 9A1 | 9A1 | 9A2 | 9A2 | 9A4 | 9A4 | 9A1 | 9A1 | 9A2 | 9A2 | 9A4 | 9A4 | |
| Type | |||||||||||||||||||||||||||||||
| 90.1.1a | R | ||||||||||||||||||||||||||||||
| 90.1.1b | R | ||||||||||||||||||||||||||||||
| 90.1.1c1 | C | ||||||||||||||||||||||||||||||
| 90.1.1c2 | C | ||||||||||||||||||||||||||||||
| 90.1.1c3 | C | ||||||||||||||||||||||||||||||
| 90.1.1c4 | C | ||||||||||||||||||||||||||||||
| 90.1.1d1 | C | ||||||||||||||||||||||||||||||
| 90.1.1d2 | C | ||||||||||||||||||||||||||||||
| 90.1.1d3 | C | ||||||||||||||||||||||||||||||
| 90.1.1d4 | C | ||||||||||||||||||||||||||||||
| 90.1.2a | R | ||||||||||||||||||||||||||||||
| 90.1.2b1 | R | ||||||||||||||||||||||||||||||
| 90.1.2b2 | R | ||||||||||||||||||||||||||||||
| 90.1.2b3 | R | ||||||||||||||||||||||||||||||
| 90.1.2c1 | C | ||||||||||||||||||||||||||||||
| 90.1.2c2 | C | ||||||||||||||||||||||||||||||
| 90.1.2c3 | C | ||||||||||||||||||||||||||||||
| 90.1.2c4 | C | ||||||||||||||||||||||||||||||
| 90.1.2d1 | C | ||||||||||||||||||||||||||||||
| 90.1.2d2 | C | ||||||||||||||||||||||||||||||
| 90.1.2d3 | C | ||||||||||||||||||||||||||||||
| 90.1.2d4 | C | ||||||||||||||||||||||||||||||
| 90.1.2d5 | C | ||||||||||||||||||||||||||||||
| 90.1.2d6 | C | ||||||||||||||||||||||||||||||
| 90.1.2d7 | C | ||||||||||||||||||||||||||||||
| 90.1.2d8 | C | ||||||||||||||||||||||||||||||
| 90.1.2d9 | C | ||||||||||||||||||||||||||||||
| 90.1.2d10 | C | ||||||||||||||||||||||||||||||
| 90.1.2d11 | C | ||||||||||||||||||||||||||||||
| 90.1.2d12 | C |
Regular extensions
Data not computed