Group action invariants
| Degree $n$ : | $45$ | |
| Transitive number $t$ : | $666$ | |
| Group : | $\PSp(4,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,6,12,19)(2,5,10,18,11)(4,8,15,22,29)(7,14,20,28,40)(9,16,24,33,13)(17,25,34,36,31)(21,30,41,45,32)(23,35,42,37,39)(26,27,38,44,43), (1,2,4,7,13)(3,5,9,14,8)(6,11,15,21,29)(10,17,24,31,19)(12,18,26,37,43)(16,23,34,35,33)(20,27,38,44,40)(22,32,41,45,30)(25,36,42,28,39) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 3: None
Degree 5: None
Degree 9: None
Degree 15: None
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 1,33)( 2,22)( 3,40)( 5,28)( 6,29)( 7,36)( 8,35)(10,24)(11,12)(13,44)(14,45) (16,38)(20,34)(21,43)(23,42)(27,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 2,34, 3)( 4,39,19)( 6, 7,27)( 8,10,42)( 9,18,41)(11,44,14)(12,13,45) (15,32,25)(17,31,37)(20,40,22)(23,35,24)(29,36,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 2, 3,34)( 4,19,39)( 6,27, 7)( 8,42,10)( 9,41,18)(11,14,44)(12,45,13) (15,25,32)(17,37,31)(20,22,40)(23,24,35)(29,30,36)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 1 $ | $540$ | $4$ | $( 1,38,33,16)( 2,29,22, 6)( 3,30,40,27)( 4,15)( 5,43,28,21)( 7,34,36,20) ( 8,12,35,11)( 9,17)(10,13,24,44)(14,42,45,23)(18,31)(19,25)(32,39)(37,41)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 2, 2, 2, 2, 1 $ | $360$ | $6$ | $( 1,33)( 2,40,34,22, 3,20)( 4,19,39)( 5,28)( 6,30, 7,29,27,36)( 8,23,10,35,42, 24)( 9,41,18)(11,45,44,12,14,13)(15,25,32)(16,38)(17,37,31)(21,43)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 2, 2, 2, 2, 1 $ | $360$ | $6$ | $( 1,33)( 2,20, 3,22,34,40)( 4,39,19)( 5,28)( 6,36,27,29, 7,30)( 8,24,42,35,10, 23)( 9,18,41)(11,13,14,12,44,45)(15,32,25)(16,38)(17,31,37)(21,43)$ |
| $ 12, 12, 6, 6, 4, 4, 1 $ | $2160$ | $12$ | $( 1,16,33,38)( 2, 7,40,29,34,27,22,36, 3, 6,20,30)( 4,32,19,15,39,25) ( 5,21,28,43)( 8,44,23,12,10,14,35,13,42,11,24,45)( 9,31,41,17,18,37)$ |
| $ 12, 12, 6, 6, 4, 4, 1 $ | $2160$ | $12$ | $( 1,16,33,38)( 2,27,20,29, 3, 7,22,30,34, 6,40,36)( 4,25,39,15,19,32) ( 5,21,28,43)( 8,14,24,12,42,44,35,45,10,11,23,13)( 9,37,18,17,41,31)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $480$ | $3$ | $( 1,33,26)( 2,22,17)( 3,40,37)( 5,16,43)( 6,29,41)( 7,36, 9)( 8,42,10) (11,25,12)(13,44,15)(14,32,45)(18,27,30)(20,31,34)(21,38,28)(23,35,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $240$ | $3$ | $( 2,13, 7)( 3,12, 6)( 5,43,16)( 8,42,10)( 9,17,15)(11,29,40)(14,30,20) (18,31,32)(21,38,28)(22,44,36)(23,24,35)(25,41,37)(27,34,45)$ |
| $ 6, 6, 6, 6, 6, 3, 3, 3, 2, 1, 1, 1, 1 $ | $720$ | $6$ | $( 2,45,13,27, 7,34)( 3, 6,12)( 4,39)( 5,35,43,23,16,24)( 8,21,42,38,10,28) ( 9,31,17,32,15,18)(11,40,29)(14,44,30,36,20,22)(25,37,41)$ |
| $ 6, 6, 6, 6, 6, 3, 3, 3, 2, 1, 1, 1, 1 $ | $720$ | $6$ | $( 2,34, 7,27,13,45)( 3,12, 6)( 4,39)( 5,24,16,23,43,35)( 8,28,10,38,42,21) ( 9,18,15,32,17,31)(11,29,40)(14,22,20,36,30,44)(25,41,37)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $270$ | $2$ | $( 1,33)( 2,30)( 3,40)( 4,39)( 5,42)( 6,29)( 7,14)( 8,16)( 9,32)(10,43)(11,12) (13,20)(15,31)(17,18)(21,24)(22,27)(23,28)(34,44)(35,38)(36,45)$ |
| $ 6, 6, 6, 6, 6, 6, 3, 2, 2, 1, 1 $ | $2160$ | $6$ | $( 1,33)( 2,14,13,30, 7,20)( 3,29,12,40, 6,11)( 4,39)( 5, 8,43,42,16,10) ( 9,31,17,32,15,18)(21,23,38,24,28,35)(22,45,44,27,36,34)(25,37,41)$ |
| $ 6, 6, 6, 6, 6, 3, 3, 3, 3, 2, 1 $ | $1440$ | $6$ | $( 1,33,26)( 2,30,17,27,22,18)( 3,40,37)( 4,39)( 5,35,43,23,16,24)( 6,29,41) ( 7,14, 9,45,36,32)( 8,28,10,38,42,21)(11,25,12)(13,20,15,34,44,31)$ |
| $ 9, 9, 9, 9, 3, 3, 3 $ | $2880$ | $9$ | $( 1,40, 5)( 2, 7,42,34,45, 9, 3,19,11)( 4,32,41,27,35,14,12,29,10) ( 6,33,18,13,16,44,39,28, 8)(15,36,26,23,25,21,30,24,43)(17,38,37)(20,22,31)$ |
| $ 9, 9, 9, 9, 3, 3, 3 $ | $2880$ | $9$ | $( 1, 5,40)( 2,42,45, 3,11, 7,34, 9,19)( 4,41,35,12,10,32,27,14,29) ( 6,18,16,39, 8,33,13,44,28)(15,26,25,30,43,36,23,21,24)(17,37,38)(20,31,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 1 $ | $3240$ | $4$ | $( 2, 4)( 3,39, 6,27)( 5,33,10,22)( 7,13)( 8,14,20,16)( 9,30,15,25) (11,36,18,44)(12,34,19,45)(17,38,26,35)(21,23,32,31)(24,41,40,43)(28,42,29,37)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5, 5 $ | $5184$ | $5$ | $( 1,37, 3,45,14)( 2,25,38,35,30)( 4,26,32,40,33)( 5,27,24, 6,43) ( 7,19,36, 9,39)( 8,34,21,12,10)(11,22,15,31,42)(13,41,23,28,20) (16,29,44,17,18)$ |
Group invariants
| Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 5 2 2 6 2 2 3 1 1 3 3 3 3 4 2 2 . . .
3 4 1 3 1 2 2 2 . 3 2 4 4 2 2 1 1 1 . 2 2
5 1 . . . . . . . . . . . . . . . . 1 . .
1a 2a 3a 6a 2b 6b 6c 4a 3b 6d 3c 3d 6e 6f 4b 12a 12b 5a 9a 9b
2P 1a 1a 3a 3a 1a 3a 3a 2a 3b 3b 3d 3c 3c 3d 2b 6f 6e 5a 9b 9a
3P 1a 2a 1a 2a 2b 2b 2b 4a 1a 2b 1a 1a 2b 2b 4b 4b 4b 5a 3d 3c
5P 1a 2a 3a 6a 2b 6c 6b 4a 3b 6d 3d 3c 6f 6e 4b 12b 12a 1a 9b 9a
7P 1a 2a 3a 6a 2b 6b 6c 4a 3b 6d 3c 3d 6e 6f 4b 12a 12b 5a 9a 9b
11P 1a 2a 3a 6a 2b 6c 6b 4a 3b 6d 3d 3c 6f 6e 4b 12b 12a 5a 9b 9a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 5 1 -1 1 -3 A -A -1 2 . C /C H /H 1 J /J . -J -/J
X.3 5 1 -1 1 -3 -A A -1 2 . /C C /H H 1 /J J . -/J -J
X.4 6 2 3 -1 -2 1 1 . . -2 -3 -3 1 1 2 -1 -1 1 . .
X.5 10 -2 1 1 2 -1 -1 . 1 -1 D /D C /C 2 -/J -J . J /J
X.6 10 -2 1 1 2 -1 -1 . 1 -1 /D D /C C 2 -J -/J . /J J
X.7 15 3 . . 7 -2 -2 1 3 1 -3 -3 1 1 -1 -1 -1 . . .
X.8 15 -1 3 -1 -1 -1 -1 -1 . 2 6 6 2 2 3 . . . . .
X.9 20 4 5 1 4 1 1 . -1 1 2 2 -2 -2 . . . . -1 -1
X.10 24 . . . 8 2 2 . 3 -1 6 6 2 2 . . . -1 . .
X.11 30 2 3 -1 -10 -1 -1 . 3 -1 3 3 -1 -1 -2 1 1 . . .
X.12 30 2 -3 -1 6 A -A . . . E /E H /H 2 -J -/J . . .
X.13 30 2 -3 -1 6 -A A . . . /E E /H H 2 -/J -J . . .
X.14 40 . -2 . -8 B /B . 1 1 F /F /B B . . . . J /J
X.15 40 . -2 . -8 /B B . 1 1 /F F B /B . . . . /J J
X.16 45 -3 . . -3 . . 1 . . G /G I /I 1 J /J . . .
X.17 45 -3 . . -3 . . 1 . . /G G /I I 1 /J J . . .
X.18 60 4 -3 1 -4 -1 -1 . -3 -1 6 6 2 2 . . . . . .
X.19 64 . 4 . . . . . -2 . -8 -8 . . . . . -1 1 1
X.20 81 -3 . . 9 . . -1 . . . . . . -3 . . 1 . .
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
B = -2*E(3)
= 1-Sqrt(-3) = 1-i3
C = -2*E(3)+E(3)^2
= (1-3*Sqrt(-3))/2 = -1-3b3
D = 5*E(3)+2*E(3)^2
= (-7+3*Sqrt(-3))/2 = -2+3b3
E = 6*E(3)-3*E(3)^2
= (-3+9*Sqrt(-3))/2 = 3+9b3
F = 2*E(3)+8*E(3)^2
= -5-3*Sqrt(-3) = -5-3i3
G = -9*E(3)^2
= (9+9*Sqrt(-3))/2 = 9+9b3
H = E(3)+2*E(3)^2
= (-3-Sqrt(-3))/2 = -2-b3
I = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
J = E(3)
= (-1+Sqrt(-3))/2 = b3
|