Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3^2:C_4\times D_5$ | 
     | |
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $45$ | 
     | |
| Transitive number $t$: | $50$ | 
     | |
| Parity: | $1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(1,39,6,19)(2,38,7,18)(3,37,8,17)(4,36,9,16)(5,40,10,20)(11,24,26,34)(12,23,27,33)(13,22,28,32)(14,21,29,31)(15,25,30,35)(41,44)(42,43)$, $(1,41)(2,45)(3,44)(4,43)(5,42)(7,10)(8,9)(11,31)(12,35)(13,34)(14,33)(15,32)(16,26)(17,30)(18,29)(19,28)(20,27)(21,36)(22,40)(23,39)(24,38)(25,37)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $10$: $D_{5}$ $20$: $D_{10}$ $36$: $C_3^2:C_4$ $40$: 20T6 $72$: 12T40 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $D_{5}$
Degree 9: $C_3^2:C_4$
Degree 15: None
Low degree siblings
30T99 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{18},1^{9}$ | $5$ | $2$ | $18$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)$ | 
| 2B | $2^{20},1^{5}$ | $9$ | $2$ | $20$ | $( 1,41)( 2,42)( 3,43)( 4,44)( 5,45)(11,31)(12,32)(13,33)(14,34)(15,35)(16,26)(17,27)(18,28)(19,29)(20,30)(21,36)(22,37)(23,38)(24,39)(25,40)$ | 
| 2C | $2^{22},1$ | $45$ | $2$ | $22$ | $( 1,19)( 2,18)( 3,17)( 4,16)( 5,20)( 6,14)( 7,13)( 8,12)( 9,11)(10,15)(21,44)(22,43)(23,42)(24,41)(25,45)(26,39)(27,38)(28,37)(29,36)(30,40)(31,34)(32,33)$ | 
| 3A | $3^{15}$ | $4$ | $3$ | $30$ | $( 1,16,31)( 2,17,32)( 3,18,33)( 4,19,34)( 5,20,35)( 6,21,36)( 7,22,37)( 8,23,38)( 9,24,39)(10,25,40)(11,26,41)(12,27,42)(13,28,43)(14,29,44)(15,30,45)$ | 
| 3B | $3^{15}$ | $4$ | $3$ | $30$ | $( 1,21,26)( 2,22,27)( 3,23,28)( 4,24,29)( 5,25,30)( 6,11,31)( 7,12,32)( 8,13,33)( 9,14,34)(10,15,35)(16,36,41)(17,37,42)(18,38,43)(19,39,44)(20,40,45)$ | 
| 4A1 | $4^{10},1^{5}$ | $9$ | $4$ | $30$ | $( 1,11,41,31)( 2,12,42,32)( 3,13,43,33)( 4,14,44,34)( 5,15,45,35)(16,36,26,21)(17,37,27,22)(18,38,28,23)(19,39,29,24)(20,40,30,25)$ | 
| 4A-1 | $4^{10},1^{5}$ | $9$ | $4$ | $30$ | $( 1,31,41,11)( 2,32,42,12)( 3,33,43,13)( 4,34,44,14)( 5,35,45,15)(16,21,26,36)(17,22,27,37)(18,23,28,38)(19,24,29,39)(20,25,30,40)$ | 
| 4B1 | $4^{10},2^{2},1$ | $45$ | $4$ | $32$ | $( 1, 3)( 4, 5)( 6,28,41,23)( 7,27,42,22)( 8,26,43,21)( 9,30,44,25)(10,29,45,24)(11,33,36,18)(12,32,37,17)(13,31,38,16)(14,35,39,20)(15,34,40,19)$ | 
| 4B-1 | $4^{10},2^{2},1$ | $45$ | $4$ | $32$ | $( 1, 3)( 4, 5)( 6,23,41,28)( 7,22,42,27)( 8,21,43,26)( 9,25,44,30)(10,24,45,29)(11,18,36,33)(12,17,37,32)(13,16,38,31)(14,20,39,35)(15,19,40,34)$ | 
| 5A1 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)(36,38,40,37,39)(41,43,45,42,44)$ | 
| 5A2 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)(36,40,39,38,37)(41,45,44,43,42)$ | 
| 6A | $6^{6},3^{3}$ | $20$ | $6$ | $36$ | $( 1,21,26)( 2,25,27, 5,22,30)( 3,24,28, 4,23,29)( 6,11,31)( 7,15,32,10,12,35)( 8,14,33, 9,13,34)(16,36,41)(17,40,42,20,37,45)(18,39,43,19,38,44)$ | 
| 6B | $6^{6},3^{3}$ | $20$ | $6$ | $36$ | $( 1,15,36, 5,11,40)( 2,14,37, 4,12,39)( 3,13,38)( 6,20,26,10,16,30)( 7,19,27, 9,17,29)( 8,18,28)(21,35,41,25,31,45)(22,34,42,24,32,44)(23,33,43)$ | 
| 10A1 | $10^{4},5$ | $18$ | $10$ | $40$ | $( 1,45, 4,43, 2,41, 5,44, 3,42)( 6,10, 9, 8, 7)(11,35,14,33,12,31,15,34,13,32)(16,30,19,28,17,26,20,29,18,27)(21,40,24,38,22,36,25,39,23,37)$ | 
| 10A3 | $10^{4},5$ | $18$ | $10$ | $40$ | $( 1,43, 5,42, 4,41, 3,45, 2,44)( 6, 8,10, 7, 9)(11,33,15,32,14,31,13,35,12,34)(16,28,20,27,19,26,18,30,17,29)(21,38,25,37,24,36,23,40,22,39)$ | 
| 15A1 | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,35,19, 3,32,16, 5,34,18, 2,31,20, 4,33,17)( 6,40,24, 8,37,21,10,39,23, 7,36,25, 9,38,22)(11,45,29,13,42,26,15,44,28,12,41,30,14,43,27)$ | 
| 15A2 | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,19,32, 5,18,31, 4,17,35, 3,16,34, 2,20,33)( 6,24,37,10,23,36, 9,22,40, 8,21,39, 7,25,38)(11,29,42,15,28,41,14,27,45,13,26,44,12,30,43)$ | 
| 15B1 | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,28,25, 2,29,21, 3,30,22, 4,26,23, 5,27,24)( 6,33,15, 7,34,11, 8,35,12, 9,31,13,10,32,14)(16,43,40,17,44,36,18,45,37,19,41,38,20,42,39)$ | 
| 15B2 | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,30,24, 3,27,21, 5,29,23, 2,26,25, 4,28,22)( 6,35,14, 8,32,11,10,34,13, 7,31,15, 9,33,12)(16,45,39,18,42,36,20,44,38,17,41,40,19,43,37)$ | 
| 20A1 | $20^{2},5$ | $18$ | $20$ | $42$ | $( 1,13,45,32, 4,11,43,35, 2,14,41,33, 5,12,44,31, 3,15,42,34)( 6, 8,10, 7, 9)(16,38,30,22,19,36,28,25,17,39,26,23,20,37,29,21,18,40,27,24)$ | 
| 20A-1 | $20^{2},5$ | $18$ | $20$ | $42$ | $( 1,33,45,12, 4,31,43,15, 2,34,41,13, 5,32,44,11, 3,35,42,14)( 6, 8,10, 7, 9)(16,23,30,37,19,21,28,40,17,24,26,38,20,22,29,36,18,25,27,39)$ | 
| 20A3 | $20^{2},5$ | $18$ | $20$ | $42$ | $( 1,20, 9,38, 2,16,10,39, 3,17, 6,40, 4,18, 7,36, 5,19, 8,37)(11,35,29,23,12,31,30,24,13,32,26,25,14,33,27,21,15,34,28,22)(41,45,44,43,42)$ | 
| 20A-3 | $20^{2},5$ | $18$ | $20$ | $42$ | $( 1,45,19,23, 2,41,20,24, 3,42,16,25, 4,43,17,21, 5,44,18,22)( 6,40,14,28, 7,36,15,29, 8,37,11,30, 9,38,12,26,10,39,13,27)(31,35,34,33,32)$ | 
Malle's constant $a(G)$: $1/18$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A1 | 5A2 | 6A | 6B | 10A1 | 10A3 | 15A1 | 15A2 | 15B1 | 15B2 | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
| Size | 1 | 5 | 9 | 45 | 4 | 4 | 9 | 9 | 45 | 45 | 2 | 2 | 20 | 20 | 18 | 18 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 2B | 2B | 5A2 | 5A1 | 3B | 3A | 5A1 | 5A2 | 15A2 | 15A1 | 15B2 | 15B1 | 10A1 | 10A1 | 10A3 | 10A3 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A2 | 5A1 | 2A | 2A | 10A3 | 10A1 | 5A1 | 5A2 | 5A2 | 5A1 | 20A3 | 20A-3 | 20A1 | 20A-1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 6A | 6B | 2B | 2B | 3A | 3A | 3B | 3B | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| Type | |||||||||||||||||||||||||
| 360.130.1a | R | ||||||||||||||||||||||||
| 360.130.1b | R | ||||||||||||||||||||||||
| 360.130.1c | R | ||||||||||||||||||||||||
| 360.130.1d | R | ||||||||||||||||||||||||
| 360.130.1e1 | C | ||||||||||||||||||||||||
| 360.130.1e2 | C | ||||||||||||||||||||||||
| 360.130.1f1 | C | ||||||||||||||||||||||||
| 360.130.1f2 | C | ||||||||||||||||||||||||
| 360.130.2a1 | R | ||||||||||||||||||||||||
| 360.130.2a2 | R | ||||||||||||||||||||||||
| 360.130.2b1 | R | ||||||||||||||||||||||||
| 360.130.2b2 | R | ||||||||||||||||||||||||
| 360.130.2c1 | C | ||||||||||||||||||||||||
| 360.130.2c2 | C | ||||||||||||||||||||||||
| 360.130.2c3 | C | ||||||||||||||||||||||||
| 360.130.2c4 | C | ||||||||||||||||||||||||
| 360.130.4a | R | ||||||||||||||||||||||||
| 360.130.4b | R | ||||||||||||||||||||||||
| 360.130.4c | R | ||||||||||||||||||||||||
| 360.130.4d | R | ||||||||||||||||||||||||
| 360.130.8a1 | R | ||||||||||||||||||||||||
| 360.130.8a2 | R | ||||||||||||||||||||||||
| 360.130.8b1 | R | ||||||||||||||||||||||||
| 360.130.8b2 | R | 
Regular extensions
Data not computed