Properties

Label 45T49
45T49 1 2 1->2 25 1->25 26 2->26 3 27 3->27 4 16 4->16 44 4->44 5 18 5->18 43 5->43 6 17 6->17 45 6->45 7 10 7->10 11 7->11 8 8->10 12 8->12 9 9->11 9->12 13 10->13 39 10->39 15 11->15 38 11->38 14 12->14 37 12->37 21 13->21 13->25 19 14->19 14->26 20 15->20 15->27 23 16->23 24 16->24 22 17->22 17->24 18->22 18->23 29 19->29 35 19->35 30 20->30 36 20->36 28 21->28 34 21->34 22->18 40 22->40 23->17 42 23->42 41 24->41 25->5 25->34 26->6 26->36 27->4 27->35 28->7 28->9 29->7 29->8 30->8 30->9 31 31->3 31->20 32 32->1 32->19 33 33->2 33->21 34->42 34->45 35->40 35->43 36->41 36->44 37->5 37->28 38->4 38->29 39->6 39->30 40->32 40->37 41->31 41->39 42->33 42->38 43->13 43->31 44->15 44->33 45->14 45->32
Degree $45$
Order $360$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $A_6$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(45, 49);
 

Group invariants

Abstract group:  $A_6$
Copy content magma:IdentifyGroup(G);
 
Order:  $360=2^{3} \cdot 3^{2} \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $45$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $49$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2)(4,44,15,27)(5,43,13,25)(6,45,14,26)(7,11,38,29)(8,10,39,30)(9,12,37,28)(16,24)(17,22,18,23)(19,35,40,32)(20,36,41,31)(21,34,42,33)$, $(1,25,34,45,32)(2,26,36,44,33)(3,27,35,43,31)(4,16,23,42,38)(5,18,22,40,37)(6,17,24,41,39)(7,10,13,21,28)(8,12,14,19,29)(9,11,15,20,30)$
Copy content magma:Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: None

Degree 9: None

Degree 15: $A_6$ x 2

Low degree siblings

6T15 x 2, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{45}$ $1$ $1$ $0$ $()$
2A $2^{20},1^{5}$ $45$ $2$ $20$ $( 1,28)( 2,30)( 3,29)( 4, 6)( 7,41)( 8,42)( 9,40)(13,24)(14,23)(15,22)(16,45)(17,43)(18,44)(19,34)(20,36)(21,35)(25,27)(31,38)(32,39)(33,37)$
3A $3^{15}$ $40$ $3$ $30$ $( 1, 8,38)( 2, 9,37)( 3, 7,39)( 4,29,19)( 5,30,20)( 6,28,21)(10,31,45)(11,33,44)(12,32,43)(13,34,17)(14,35,16)(15,36,18)(22,26,40)(23,27,41)(24,25,42)$
3B $3^{15}$ $40$ $3$ $30$ $( 1,40,45)( 2,42,43)( 3,41,44)( 4, 7,34)( 5, 8,36)( 6, 9,35)(10,31,14)(11,32,15)(12,33,13)(16,27,20)(17,25,19)(18,26,21)(22,24,23)(28,30,29)(37,39,38)$
4A $4^{10},2^{2},1$ $90$ $4$ $32$ $( 1,19,28,34)( 2,21,30,35)( 3,20,29,36)( 4,27, 6,25)( 5,26)( 7,31,41,38)( 8,33,42,37)( 9,32,40,39)(10,12)(13,18,24,44)(14,17,23,43)(15,16,22,45)$
5A1 $5^{9}$ $72$ $5$ $36$ $( 1,20, 5,13,41)( 2,21, 4,15,42)( 3,19, 6,14,40)( 7,33,16,34,38)( 8,31,18,35,37)( 9,32,17,36,39)(10,43,25,30,24)(11,45,27,28,22)(12,44,26,29,23)$
5A2 $5^{9}$ $72$ $5$ $36$ $( 1, 5,41,20,13)( 2, 4,42,21,15)( 3, 6,40,19,14)( 7,16,38,33,34)( 8,18,37,31,35)( 9,17,39,32,36)(10,25,24,43,30)(11,27,22,45,28)(12,26,23,44,29)$

Malle's constant $a(G)$:     $1/20$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A 3B 4A 5A1 5A2
Size 1 45 40 40 90 72 72
2 P 1A 1A 3A 3B 2A 5A2 5A1
3 P 1A 2A 1A 1A 4A 5A2 5A1
5 P 1A 2A 3A 3B 4A 1A 1A
Type
360.118.1a R 1 1 1 1 1 1 1
360.118.5a R 5 1 1 2 1 0 0
360.118.5b R 5 1 2 1 1 0 0
360.118.8a1 R 8 0 1 1 0 ζ51ζ5 ζ52ζ52
360.118.8a2 R 8 0 1 1 0 ζ52ζ52 ζ51ζ5
360.118.9a R 9 1 0 0 1 1 1
360.118.10a R 10 2 1 1 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed