Group action invariants
Degree $n$: | $45$ | |
Transitive number $t$: | $49$ | |
Group: | $A_6$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $1$ | |
Generators: | (1,2)(4,44,15,27)(5,43,13,25)(6,45,14,26)(7,11,38,29)(8,10,39,30)(9,12,37,28)(16,24)(17,22,18,23)(19,35,40,32)(20,36,41,31)(21,34,42,33), (1,25,34,45,32)(2,26,36,44,33)(3,27,35,43,31)(4,16,23,42,38)(5,18,22,40,37)(6,17,24,41,39)(7,10,13,21,28)(8,12,14,19,29)(9,11,15,20,30) |
Low degree resolvents
noneResolvents shown for degrees $\leq 10$
Subfields
Degree 3: None
Degree 5: None
Degree 9: None
Degree 15: $A_6$ x 2
Low degree siblings
6T15 x 2, 10T26Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 4,15)( 5,13)( 6,14)( 7,38)( 8,39)( 9,37)(10,30)(11,29)(12,28)(17,18)(19,40) (20,41)(21,42)(22,23)(25,43)(26,45)(27,44)(31,36)(32,35)(33,34)$ |
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 1 $ | $90$ | $4$ | $( 2, 3)( 4,32,20,43)( 5,33,19,45)( 6,31,21,44)( 7,23,39,18)( 8,22,38,17) ( 9,24,37,16)(10,29,11,30)(12,28)(13,26,40,34)(14,27,42,36)(15,25,41,35)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7,22,30)( 8,23,29)( 9,24,28)(10,39,18)(11,38,17) (12,37,16)(13,21,41)(14,20,40)(15,19,42)(25,44,33)(26,43,31)(27,45,32) (34,35,36)$ |
$ 5, 5, 5, 5, 5, 5, 5, 5, 5 $ | $72$ | $5$ | $( 1, 4, 9,11,32)( 2, 5, 8,12,31)( 3, 6, 7,10,33)(13,36,42,23,44) (14,34,40,24,43)(15,35,41,22,45)(16,38,25,19,30)(17,37,26,21,28) (18,39,27,20,29)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 4,35)( 2, 5,36)( 3, 6,34)( 7,25,14)( 8,27,13)( 9,26,15)(10,16,38) (11,18,37)(12,17,39)(19,24,43)(20,22,44)(21,23,45)(28,31,42)(29,32,41) (30,33,40)$ |
$ 5, 5, 5, 5, 5, 5, 5, 5, 5 $ | $72$ | $5$ | $( 1, 4,14,42,20)( 2, 6,13,40,21)( 3, 5,15,41,19)( 7,39,44,28,31) ( 8,37,43,29,33)( 9,38,45,30,32)(10,16,26,36,23)(11,18,27,34,24) (12,17,25,35,22)$ |
Group invariants
Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | no | |
GAP id: | [360, 118] |
Character table: |
2 3 3 2 . . . . 3 2 . . 2 . 2 . 5 1 . . . 1 . 1 1a 2a 4a 3a 5a 3b 5b 2P 1a 1a 2a 3a 5b 3b 5a 3P 1a 2a 4a 1a 5b 1a 5a 5P 1a 2a 4a 3a 1a 3b 1a X.1 1 1 1 1 1 1 1 X.2 5 1 -1 2 . -1 . X.3 5 1 -1 -1 . 2 . X.4 8 . . -1 A -1 *A X.5 8 . . -1 *A -1 A X.6 9 1 1 . -1 . -1 X.7 10 -2 . 1 . 1 . A = -E(5)-E(5)^4 = (1-Sqrt(5))/2 = -b5 |