Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3:S_3\times F_5$ | 
     | |
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $45$ | 
     | |
| Transitive number $t$: | $48$ | 
     | |
| Parity: | $-1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(1,22)(2,24)(3,23)(4,20)(5,19)(6,21)(7,18)(8,17)(9,16)(10,14)(11,13)(12,15)(25,45)(26,44)(27,43)(28,40)(29,42)(30,41)(31,37)(32,39)(33,38)(34,36)$, $(1,9,41,19,16,22,10,35,31,37,27,5)(2,7,40,21,17,23,12,34,32,38,26,4)(3,8,42,20,18,24,11,36,33,39,25,6)(13,29,45)(14,30,43)(15,28,44)$, $(1,15,34,37,33,45,19,24,17,30,6,7)(2,14,36,38,31,44,21,22,18,29,5,8)(3,13,35,39,32,43,20,23,16,28,4,9)(10,42,26)(11,40,27)(12,41,25)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ x 4 $8$: $C_4\times C_2$ $12$: $D_{6}$ x 4 $18$: $C_3^2:C_2$ $20$: $F_5$ $24$: $S_3 \times C_4$ x 4 $36$: 18T12 $40$: $F_{5}\times C_2$ $72$: 36T41 $120$: $F_5 \times S_3$ x 4 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 4
Degree 5: $F_5$
Degree 9: $C_3^2:C_2$
Degree 15: $F_5 \times S_3$ x 4
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{18},1^{9}$ | $5$ | $2$ | $18$ | $( 1,37)( 2,38)( 3,39)( 7,17)( 8,18)( 9,16)(10,30)(11,28)(12,29)(13,40)(14,41)(15,42)(22,31)(23,32)(24,33)(25,44)(26,45)(27,43)$ | 
| 2B | $2^{20},1^{5}$ | $9$ | $2$ | $20$ | $( 1,33)( 2,32)( 3,31)( 4,21)( 5,20)( 6,19)( 8, 9)(10,42)(11,41)(12,40)(13,29)(14,28)(15,30)(16,18)(22,39)(23,38)(24,37)(25,27)(35,36)(43,44)$ | 
| 2C | $2^{22},1$ | $45$ | $2$ | $22$ | $( 1, 7)( 2, 9)( 3, 8)( 4, 5)(10,45)(11,44)(12,43)(13,41)(14,40)(15,42)(16,38)(17,37)(18,39)(19,34)(20,36)(21,35)(22,32)(23,31)(24,33)(25,28)(26,30)(27,29)$ | 
| 3A | $3^{15}$ | $2$ | $3$ | $30$ | $( 1,31,16)( 2,32,17)( 3,33,18)( 4,34,21)( 5,35,19)( 6,36,20)( 7,38,23)( 8,39,24)( 9,37,22)(10,41,27)(11,42,25)(12,40,26)(13,45,29)(14,43,30)(15,44,28)$ | 
| 3B | $3^{15}$ | $2$ | $3$ | $30$ | $( 1, 2, 3)( 4, 6, 5)( 7, 8, 9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,42,41)(43,45,44)$ | 
| 3C | $3^{15}$ | $2$ | $3$ | $30$ | $( 1,18,32)( 2,16,33)( 3,17,31)( 4,19,36)( 5,20,34)( 6,21,35)( 7,22,39)( 8,23,37)( 9,24,38)(10,25,40)(11,26,41)(12,27,42)(13,30,44)(14,28,45)(15,29,43)$ | 
| 3D | $3^{15}$ | $2$ | $3$ | $30$ | $( 1,17,33)( 2,18,31)( 3,16,32)( 4,20,35)( 5,21,36)( 6,19,34)( 7,24,37)( 8,22,38)( 9,23,39)(10,26,42)(11,27,40)(12,25,41)(13,28,43)(14,29,44)(15,30,45)$ | 
| 4A1 | $4^{9},1^{9}$ | $5$ | $4$ | $27$ | $( 1,10,37,30)( 2,12,38,29)( 3,11,39,28)( 7,45,17,26)( 8,44,18,25)( 9,43,16,27)(13,32,40,23)(14,31,41,22)(15,33,42,24)$ | 
| 4A-1 | $4^{9},1^{9}$ | $5$ | $4$ | $27$ | $( 1,30,37,10)( 2,29,38,12)( 3,28,39,11)( 7,26,17,45)( 8,25,18,44)( 9,27,16,43)(13,23,40,32)(14,22,41,31)(15,24,42,33)$ | 
| 4B1 | $4^{9},2^{4},1$ | $45$ | $4$ | $31$ | $( 1,29,37,12)( 2,30,38,10)( 3,28,39,11)( 4,35)( 5,34)( 6,36)( 7,41,17,14)( 8,42,18,15)( 9,40,16,13)(19,21)(22,26,31,45)(23,27,32,43)(24,25,33,44)$ | 
| 4B-1 | $4^{9},2^{4},1$ | $45$ | $4$ | $31$ | $( 1,12,37,29)( 2,10,38,30)( 3,11,39,28)( 4,35)( 5,34)( 6,36)( 7,14,17,41)( 8,15,18,42)( 9,13,16,40)(19,21)(22,45,31,26)(23,43,32,27)(24,44,33,25)$ | 
| 5A | $5^{9}$ | $4$ | $5$ | $36$ | $( 1,30,10,37,19)( 2,29,12,38,21)( 3,28,11,39,20)( 4,32,13,40,23)( 5,31,14,41,22)( 6,33,15,42,24)( 7,34,17,45,26)( 8,36,18,44,25)( 9,35,16,43,27)$ | 
| 6A | $6^{6},3^{3}$ | $10$ | $6$ | $36$ | $( 1, 9,31,37,16,22)( 2, 7,32,38,17,23)( 3, 8,33,39,18,24)( 4,21,34)( 5,19,35)( 6,20,36)(10,43,41,30,27,14)(11,44,42,28,25,15)(12,45,40,29,26,13)$ | 
| 6B | $6^{6},3^{3}$ | $10$ | $6$ | $36$ | $( 1,20, 2,19, 3,21)( 4,31, 6,32, 5,33)( 7,43, 8,45, 9,44)(10,11,12)(13,22,15,23,14,24)(16,36,17,35,18,34)(25,26,27)(28,38,30,39,29,37)(40,41,42)$ | 
| 6C | $6^{6},3^{3}$ | $10$ | $6$ | $36$ | $( 1,32,18)( 2,33,16)( 3,31,17)( 4,44,19,13,36,30)( 5,45,20,14,34,28)( 6,43,21,15,35,29)( 7,11,22,26,39,41)( 8,10,23,25,37,40)( 9,12,24,27,38,42)$ | 
| 6D | $6^{6},3^{3}$ | $10$ | $6$ | $36$ | $( 1,15,17,30,33,45)( 2,14,18,29,31,44)( 3,13,16,28,32,43)( 4,27,20,40,35,11)( 5,25,21,41,36,12)( 6,26,19,42,34,10)( 7,37,24)( 8,38,22)( 9,39,23)$ | 
| 10A | $10^{4},5$ | $36$ | $10$ | $40$ | $( 1, 6,37,42,30,33,19,24,10,15)( 2, 4,38,40,29,32,21,23,12,13)( 3, 5,39,41,28,31,20,22,11,14)( 7,26,45,17,34)( 8,27,44,16,36, 9,25,43,18,35)$ | 
| 12A1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,14, 9,10,31,43,37,41,16,30,22,27)( 2,13, 7,12,32,45,38,40,17,29,23,26)( 3,15, 8,11,33,44,39,42,18,28,24,25)( 4,34,21)( 5,35,19)( 6,36,20)$ | 
| 12A-1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,41, 9,30,31,27,37,14,16,10,22,43)( 2,40, 7,29,32,26,38,13,17,12,23,45)( 3,42, 8,28,33,25,39,15,18,11,24,44)( 4,34,21)( 5,35,19)( 6,36,20)$ | 
| 12B1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,38,20,30, 2,39,19,29, 3,37,21,28)( 4,15,31,23, 6,14,32,24, 5,13,33,22)( 7,36,43,17, 8,35,45,18, 9,34,44,16)(10,12,11)(25,27,26)(40,42,41)$ | 
| 12B-1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,21,28,10, 2,20,30,12, 3,19,29,11)( 4,15,41,32, 6,14,40,33, 5,13,42,31)( 7, 8, 9)(16,34,44,27,17,36,43,26,18,35,45,25)(22,23,24)(37,38,39)$ | 
| 12C1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,18,32)( 2,16,33)( 3,17,31)( 4,37,44,40,19, 8,13,10,36,23,30,25)( 5,39,45,41,20, 7,14,11,34,22,28,26)( 6,38,43,42,21, 9,15,12,35,24,29,27)$ | 
| 12C-1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,44, 4,37,18,13,19, 8,32,30,36,23)( 2,43, 6,38,16,15,21, 9,33,29,35,24)( 3,45, 5,39,17,14,20, 7,31,28,34,22)(10,25,40)(11,26,41)(12,27,42)$ | 
| 12D1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1,34,15,10,17, 6,30,26,33,19,45,42)( 2,36,14,12,18, 5,29,25,31,21,44,41)( 3,35,13,11,16, 4,28,27,32,20,43,40)( 7,24,37)( 8,22,38)( 9,23,39)$ | 
| 12D-1 | $12^{3},3^{3}$ | $10$ | $12$ | $39$ | $( 1, 7, 6,30,17,24,19,45,33,37,34,15)( 2, 8, 5,29,18,22,21,44,31,38,36,14)( 3, 9, 4,28,16,23,20,43,32,39,35,13)(10,26,42)(11,27,40)(12,25,41)$ | 
| 15A | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,26, 6,30, 7,33,10,34,15,37,17,42,19,45,24)( 2,25, 5,29, 8,31,12,36,14,38,18,41,21,44,22)( 3,27, 4,28, 9,32,11,35,13,39,16,40,20,43,23)$ | 
| 15B | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,14,27,37, 5,16,30,41, 9,19,31,43,10,22,35)( 2,13,26,38, 4,17,29,40, 7,21,32,45,12,23,34)( 3,15,25,39, 6,18,28,42, 8,20,33,44,11,24,36)$ | 
| 15C | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,12,20,30,38, 3,10,21,28,37, 2,11,19,29,39)( 4,15,22,32,42, 5,13,24,31,40, 6,14,23,33,41)( 7,18,27,34,44, 9,17,25,35,45, 8,16,26,36,43)$ | 
| 15D | $15^{3}$ | $8$ | $15$ | $42$ | $( 1,36,23,10,44,32,19, 8,40,30,18, 4,37,25,13)( 2,35,24,12,43,33,21, 9,42,29,16, 6,38,27,15)( 3,34,22,11,45,31,20, 7,41,28,17, 5,39,26,14)$ | 
Malle's constant $a(G)$: $1/18$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 6A | 6B | 6C | 6D | 10A | 12A1 | 12A-1 | 12B1 | 12B-1 | 12C1 | 12C-1 | 12D1 | 12D-1 | 15A | 15B | 15C | 15D | ||
| Size | 1 | 5 | 9 | 45 | 2 | 2 | 2 | 2 | 5 | 5 | 45 | 45 | 4 | 10 | 10 | 10 | 10 | 36 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 2A | 2A | 2A | 5A | 3A | 3B | 3C | 3D | 5A | 6A | 6A | 6B | 6B | 6C | 6C | 6D | 6D | 15A | 15B | 15C | 15D | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A | 2A | 2A | 2A | 2A | 10A | 4A1 | 4A-1 | 4A1 | 4A-1 | 4A1 | 4A-1 | 4A-1 | 4A1 | 5A | 5A | 5A | 5A | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 6A | 6B | 6C | 6D | 2B | 12A1 | 12A-1 | 12B1 | 12B-1 | 12C1 | 12C-1 | 12D1 | 12D-1 | 3D | 3A | 3B | 3C | |
| Type | |||||||||||||||||||||||||||||||
| 360.127.1a | R | ||||||||||||||||||||||||||||||
| 360.127.1b | R | ||||||||||||||||||||||||||||||
| 360.127.1c | R | ||||||||||||||||||||||||||||||
| 360.127.1d | R | ||||||||||||||||||||||||||||||
| 360.127.1e1 | C | ||||||||||||||||||||||||||||||
| 360.127.1e2 | C | ||||||||||||||||||||||||||||||
| 360.127.1f1 | C | ||||||||||||||||||||||||||||||
| 360.127.1f2 | C | ||||||||||||||||||||||||||||||
| 360.127.2a | R | ||||||||||||||||||||||||||||||
| 360.127.2b | R | ||||||||||||||||||||||||||||||
| 360.127.2c | R | ||||||||||||||||||||||||||||||
| 360.127.2d | R | ||||||||||||||||||||||||||||||
| 360.127.2e | R | ||||||||||||||||||||||||||||||
| 360.127.2f | R | ||||||||||||||||||||||||||||||
| 360.127.2g | R | ||||||||||||||||||||||||||||||
| 360.127.2h | R | ||||||||||||||||||||||||||||||
| 360.127.2i1 | C | ||||||||||||||||||||||||||||||
| 360.127.2i2 | C | ||||||||||||||||||||||||||||||
| 360.127.2j1 | C | ||||||||||||||||||||||||||||||
| 360.127.2j2 | C | ||||||||||||||||||||||||||||||
| 360.127.2k1 | C | ||||||||||||||||||||||||||||||
| 360.127.2k2 | C | ||||||||||||||||||||||||||||||
| 360.127.2l1 | C | ||||||||||||||||||||||||||||||
| 360.127.2l2 | C | ||||||||||||||||||||||||||||||
| 360.127.4a | R | ||||||||||||||||||||||||||||||
| 360.127.4b | R | ||||||||||||||||||||||||||||||
| 360.127.8a | R | ||||||||||||||||||||||||||||||
| 360.127.8b | R | ||||||||||||||||||||||||||||||
| 360.127.8c | R | ||||||||||||||||||||||||||||||
| 360.127.8d | R | 
Regular extensions
Data not computed