Show commands: Magma
Group invariants
Abstract group: | $D_{45}$ |
| |
Order: | $90=2 \cdot 3^{2} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $45$ |
| |
Transitive number $t$: | $4$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,14)(2,13)(3,15)(4,10)(5,11)(6,12)(7,8)(16,44)(17,43)(18,45)(19,40)(20,42)(21,41)(22,39)(23,37)(24,38)(25,36)(26,34)(27,35)(28,31)(29,32)(30,33)$, $(1,21)(2,20)(3,19)(4,16)(5,18)(6,17)(7,14)(8,15)(9,13)(11,12)(22,43)(23,44)(24,45)(25,42)(26,40)(27,41)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $10$: $D_{5}$ $18$: $D_{9}$ $30$: $D_{15}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $D_{5}$
Degree 9: $D_{9}$
Degree 15: $D_{15}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{22},1$ | $45$ | $2$ | $22$ | $( 1,10)( 2,12)( 3,11)( 4, 7)( 5, 9)( 6, 8)(13,45)(14,43)(15,44)(16,41)(17,42)(18,40)(19,37)(20,38)(21,39)(22,36)(23,35)(24,34)(25,32)(26,33)(27,31)(29,30)$ |
3A | $3^{15}$ | $2$ | $3$ | $30$ | $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,24,23)(25,26,27)(28,29,30)(31,33,32)(34,36,35)(37,38,39)(40,42,41)(43,44,45)$ |
5A1 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1,39,28,21,10)( 2,38,30,19,11)( 3,37,29,20,12)( 4,41,31,22,14)( 5,40,33,24,13)( 6,42,32,23,15)( 7,43,36,27,16)( 8,44,35,25,17)( 9,45,34,26,18)$ |
5A2 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1,28,10,39,21)( 2,30,11,38,19)( 3,29,12,37,20)( 4,31,14,41,22)( 5,33,13,40,24)( 6,32,15,42,23)( 7,36,16,43,27)( 8,35,17,44,25)( 9,34,18,45,26)$ |
9A1 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,32,18, 3,31,16, 2,33,17)( 4,36,19, 5,35,21, 6,34,20)( 7,38,24, 8,39,23, 9,37,22)(10,42,26,12,41,27,11,40,25)(13,44,28,15,45,29,14,43,30)$ |
9A2 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,18,31, 2,17,32, 3,16,33)( 4,19,35, 6,20,36, 5,21,34)( 7,24,39, 9,22,38, 8,23,37)(10,26,41,11,25,42,12,27,40)(13,28,45,14,30,44,15,29,43)$ |
9A4 | $9^{5}$ | $2$ | $9$ | $40$ | $( 1,31,17, 3,33,18, 2,32,16)( 4,35,20, 5,34,19, 6,36,21)( 7,39,22, 8,37,24, 9,38,23)(10,41,25,12,40,26,11,42,27)(13,45,30,15,43,28,14,44,29)$ |
15A1 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,30,12,39,19, 3,28,11,37,21, 2,29,10,38,20)( 4,32,13,41,23, 5,31,15,40,22, 6,33,14,42,24)( 7,34,17,43,26, 8,36,18,44,27, 9,35,16,45,25)$ |
15A2 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,12,19,28,37, 2,10,20,30,39, 3,11,21,29,38)( 4,13,23,31,40, 6,14,24,32,41, 5,15,22,33,42)( 7,17,26,36,44, 9,16,25,34,43, 8,18,27,35,45)$ |
15A4 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,19,37,10,30, 3,21,38,12,28, 2,20,39,11,29)( 4,23,40,14,32, 5,22,42,13,31, 6,24,41,15,33)( 7,26,44,16,34, 8,27,45,17,36, 9,25,43,18,35)$ |
15A7 | $15^{3}$ | $2$ | $15$ | $42$ | $( 1,11,20,28,38, 3,10,19,29,39, 2,12,21,30,37)( 4,15,24,31,42, 5,14,23,33,41, 6,13,22,32,40)( 7,18,25,36,45, 8,16,26,35,43, 9,17,27,34,44)$ |
45A1 | $45$ | $2$ | $45$ | $44$ | $( 1,26, 4,30, 8,32,12,36,13,39,18,41,19,44,23, 3,27, 5,28, 9,31,11,35,15,37,16,40,21,45,22, 2,25, 6,29, 7,33,10,34,14,38,17,42,20,43,24)$ |
45A2 | $45$ | $2$ | $45$ | $44$ | $( 1, 4, 8,12,13,18,19,23,27,28,31,35,37,40,45, 2, 6, 7,10,14,17,20,24,26,30,32,36,39,41,44, 3, 5, 9,11,15,16,21,22,25,29,33,34,38,42,43)$ |
45A4 | $45$ | $2$ | $45$ | $44$ | $( 1, 8,13,19,27,31,37,45, 6,10,17,24,30,36,41, 3, 9,15,21,25,33,38,43, 4,12,18,23,28,35,40, 2, 7,14,20,26,32,39,44, 5,11,16,22,29,34,42)$ |
45A7 | $45$ | $2$ | $45$ | $44$ | $( 1,36,23,11,45,33,20, 8,41,28,16, 6,38,26,13, 3,35,22,10,43,32,19, 9,40,29,17, 4,39,27,15, 2,34,24,12,44,31,21, 7,42,30,18, 5,37,25,14)$ |
45A8 | $45$ | $2$ | $45$ | $44$ | $( 1,13,27,37, 6,17,30,41, 9,21,33,43,12,23,35, 2,14,26,39, 5,16,29,42, 8,19,31,45,10,24,36, 3,15,25,38, 4,18,28,40, 7,20,32,44,11,22,34)$ |
45A11 | $45$ | $2$ | $45$ | $44$ | $( 1,41,35,29,24,18,11, 6,43,39,31,25,20,13, 9, 2,42,36,28,22,17,12, 5,45,38,32,27,21,14, 8, 3,40,34,30,23,16,10, 4,44,37,33,26,19,15, 7)$ |
45A13 | $45$ | $2$ | $45$ | $44$ | $( 1,44,40,38,36,31,29,26,23,21,17,13,11, 7, 4, 3,45,42,39,35,33,30,27,22,20,18,15,10, 8, 5, 2,43,41,37,34,32,28,25,24,19,16,14,12, 9, 6)$ |
45A14 | $45$ | $2$ | $45$ | $44$ | $( 1,23,45,20,41,16,38,13,35,10,32, 9,29, 4,27, 2,24,44,21,42,18,37,14,36,11,33, 8,28, 6,26, 3,22,43,19,40,17,39,15,34,12,31, 7,30, 5,25)$ |
45A16 | $45$ | $2$ | $45$ | $44$ | $( 1,22,44,20,40,18,38,15,36,10,31, 8,29, 5,26, 2,23,43,21,41,17,37,13,34,11,32, 7,28, 4,25, 3,24,45,19,42,16,39,14,35,12,33, 9,30, 6,27)$ |
45A17 | $45$ | $2$ | $45$ | $44$ | $( 1,45,41,38,35,32,29,27,24,21,18,14,11, 8, 6, 3,43,40,39,34,31,30,25,23,20,16,13,10, 9, 4, 2,44,42,37,36,33,28,26,22,19,17,15,12, 7, 5)$ |
45A19 | $45$ | $2$ | $45$ | $44$ | $( 1, 9,14,19,25,32,37,43, 5,10,18,22,30,35,42, 3, 7,13,21,26,31,38,44, 6,12,16,24,28,34,41, 2, 8,15,20,27,33,39,45, 4,11,17,23,29,36,40)$ |
45A22 | $45$ | $2$ | $45$ | $44$ | $( 1,35,24,11,43,31,20, 9,42,28,17, 5,38,27,14, 3,34,23,10,44,33,19, 7,41,29,18, 6,39,25,13, 2,36,22,12,45,32,21, 8,40,30,16, 4,37,26,15)$ |
Malle's constant $a(G)$: $1/22$
Character table
1A | 2A | 3A | 5A1 | 5A2 | 9A1 | 9A2 | 9A4 | 15A1 | 15A2 | 15A4 | 15A7 | 45A1 | 45A2 | 45A4 | 45A7 | 45A8 | 45A11 | 45A13 | 45A14 | 45A16 | 45A17 | 45A19 | 45A22 | ||
Size | 1 | 45 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | 9A2 | 9A4 | 9A1 | 15A2 | 15A4 | 15A7 | 15A1 | 45A2 | 45A4 | 45A8 | 45A14 | 45A16 | 45A22 | 45A19 | 45A17 | 45A13 | 45A11 | 45A7 | 45A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | 3A | 3A | 3A | 5A1 | 5A2 | 5A1 | 5A2 | 15A1 | 15A2 | 15A4 | 15A7 | 15A7 | 15A4 | 15A2 | 15A1 | 15A1 | 15A2 | 15A4 | 15A7 | |
5 P | 1A | 2A | 3A | 1A | 1A | 9A4 | 9A1 | 9A2 | 3A | 3A | 3A | 3A | 9A1 | 9A2 | 9A4 | 9A2 | 9A1 | 9A2 | 9A4 | 9A4 | 9A2 | 9A1 | 9A1 | 9A4 | |
Type | |||||||||||||||||||||||||
90.3.1a | R | ||||||||||||||||||||||||
90.3.1b | R | ||||||||||||||||||||||||
90.3.2a | R | ||||||||||||||||||||||||
90.3.2b1 | R | ||||||||||||||||||||||||
90.3.2b2 | R | ||||||||||||||||||||||||
90.3.2c1 | R | ||||||||||||||||||||||||
90.3.2c2 | R | ||||||||||||||||||||||||
90.3.2c3 | R | ||||||||||||||||||||||||
90.3.2d1 | R | ||||||||||||||||||||||||
90.3.2d2 | R | ||||||||||||||||||||||||
90.3.2d3 | R | ||||||||||||||||||||||||
90.3.2d4 | R | ||||||||||||||||||||||||
90.3.2e1 | R | ||||||||||||||||||||||||
90.3.2e2 | R | ||||||||||||||||||||||||
90.3.2e3 | R | ||||||||||||||||||||||||
90.3.2e4 | R | ||||||||||||||||||||||||
90.3.2e5 | R | ||||||||||||||||||||||||
90.3.2e6 | R | ||||||||||||||||||||||||
90.3.2e7 | R | ||||||||||||||||||||||||
90.3.2e8 | R | ||||||||||||||||||||||||
90.3.2e9 | R | ||||||||||||||||||||||||
90.3.2e10 | R | ||||||||||||||||||||||||
90.3.2e11 | R | ||||||||||||||||||||||||
90.3.2e12 | R |
Regular extensions
Data not computed