Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_{15}:D_6$ | 
     | |
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $45$ | 
     | |
| Transitive number $t$: | $21$ | 
     | |
| Parity: | $-1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(1,7,29,35,10,17,37,44,21,25)(2,9,30,36,11,18,39,45,19,26)(3,8,28,34,12,16,38,43,20,27)(4,42,31,22,15,5,41,32,23,13)(6,40,33,24,14)$, $(1,28,2,29,3,30)(4,25,6,27,5,26)(7,24,8,22,9,23)(10,20,11,21,12,19)(13,18,15,17,14,16)(31,44,33,43,32,45)(34,42,36,41,35,40)(37,38,39)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $10$: $D_{5}$ $12$: $D_{6}$ x 2 $20$: $D_{10}$ $36$: $S_3^2$ $60$: $D_5\times S_3$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 2
Degree 5: $D_{5}$
Degree 9: $S_3^2$
Degree 15: $D_5\times S_3$ x 2
Low degree siblings
30T43Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{20},1^{5}$ | $9$ | $2$ | $20$ | $( 1,16)( 2,17)( 3,18)( 5, 6)( 7,39)( 8,37)( 9,38)(10,27)(11,25)(12,26)(13,14)(19,35)(20,36)(21,34)(22,24)(28,45)(29,43)(30,44)(32,33)(40,42)$ | 
| 2B | $2^{21},1^{3}$ | $15$ | $2$ | $21$ | $( 1,39)( 2,37)( 3,38)( 4, 6)( 7,17)( 8,18)( 9,16)(10,30)(11,29)(12,28)(13,42)(14,41)(15,40)(19,21)(22,32)(23,33)(24,31)(25,44)(26,43)(27,45)(34,36)$ | 
| 2C | $2^{21},1^{3}$ | $15$ | $2$ | $21$ | $( 1,15)( 2,14)( 3,13)( 4,10)( 5,12)( 6,11)(16,43)(17,44)(18,45)(19,40)(20,42)(21,41)(22,38)(23,37)(24,39)(25,35)(26,36)(27,34)(28,32)(29,31)(30,33)$ | 
| 3A | $3^{15}$ | $2$ | $3$ | $30$ | $( 1,16,31)( 2,18,33)( 3,17,32)( 4,21,34)( 5,20,35)( 6,19,36)( 7,22,38)( 8,23,37)( 9,24,39)(10,27,41)(11,26,40)(12,25,42)(13,28,44)(14,30,45)(15,29,43)$ | 
| 3B | $3^{15}$ | $2$ | $3$ | $30$ | $( 1, 2, 3)( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,27,26)(28,29,30)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)$ | 
| 3C | $3^{15}$ | $4$ | $3$ | $30$ | $( 1,18,32)( 2,17,31)( 3,16,33)( 4,19,35)( 5,21,36)( 6,20,34)( 7,23,39)( 8,24,38)( 9,22,37)(10,26,42)(11,25,41)(12,27,40)(13,29,45)(14,28,43)(15,30,44)$ | 
| 5A1 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1,10,21,29,37)( 2,11,19,30,39)( 3,12,20,28,38)( 4,15,23,31,41)( 5,13,22,32,42)( 6,14,24,33,40)( 7,17,25,35,44)( 8,16,27,34,43)( 9,18,26,36,45)$ | 
| 5A2 | $5^{9}$ | $2$ | $5$ | $36$ | $( 1,21,37,10,29)( 2,19,39,11,30)( 3,20,38,12,28)( 4,23,41,15,31)( 5,22,42,13,32)( 6,24,40,14,33)( 7,25,44,17,35)( 8,27,43,16,34)( 9,26,45,18,36)$ | 
| 6A | $6^{7},3$ | $30$ | $6$ | $37$ | $( 1,24,16,39,31, 9)( 2,23,18,37,33, 8)( 3,22,17,38,32, 7)( 4,36,21, 6,34,19)( 5,35,20)(10,14,27,30,41,45)(11,15,26,29,40,43)(12,13,25,28,42,44)$ | 
| 6B | $6^{7},3$ | $30$ | $6$ | $37$ | $( 1,14, 3,15, 2,13)( 4,11, 5,10, 6,12)( 7, 8, 9)(16,45,17,43,18,44)(19,42,21,40,20,41)(22,37,24,38,23,39)(25,34,26,35,27,36)(28,31,30,32,29,33)$ | 
| 10A1 | $10^{4},5$ | $18$ | $10$ | $40$ | $( 1,27,21,43,37,16,10,34,29, 8)( 2,25,19,44,39,17,11,35,30, 7)( 3,26,20,45,38,18,12,36,28, 9)( 4,15,23,31,41)( 5,14,22,33,42, 6,13,24,32,40)$ | 
| 10A3 | $10^{4},5$ | $18$ | $10$ | $40$ | $( 1,43,10, 8,21,16,29,27,37,34)( 2,44,11, 7,19,17,30,25,39,35)( 3,45,12, 9,20,18,28,26,38,36)( 4,31,15,41,23)( 5,33,13,40,22, 6,32,14,42,24)$ | 
| 15A1 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 4, 8,10,15,16,21,23,27,29,31,34,37,41,43)( 2, 6, 9,11,14,18,19,24,26,30,33,36,39,40,45)( 3, 5, 7,12,13,17,20,22,25,28,32,35,38,42,44)$ | 
| 15A2 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 8,15,21,27,31,37,43, 4,10,16,23,29,34,41)( 2, 9,14,19,26,33,39,45, 6,11,18,24,30,36,40)( 3, 7,13,20,25,32,38,44, 5,12,17,22,28,35,42)$ | 
| 15B1 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1,12,19,29,38, 2,10,20,30,37, 3,11,21,28,39)( 4,13,24,31,42, 6,15,22,33,41, 5,14,23,32,40)( 7,18,27,35,45, 8,17,26,34,44, 9,16,25,36,43)$ | 
| 15B2 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1,20,39,10,28, 2,21,38,11,29, 3,19,37,12,30)( 4,22,40,15,32, 6,23,42,14,31, 5,24,41,13,33)( 7,26,43,17,36, 8,25,45,16,35, 9,27,44,18,34)$ | 
| 15C1 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 5, 9,10,13,18,21,22,26,29,32,36,37,42,45)( 2, 4, 7,11,15,17,19,23,25,30,31,35,39,41,44)( 3, 6, 8,12,14,16,20,24,27,28,33,34,38,40,43)$ | 
| 15C-1 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 6, 7,10,14,17,21,24,25,29,33,35,37,40,44)( 2, 5, 8,11,13,16,19,22,27,30,32,34,39,42,43)( 3, 4, 9,12,15,18,20,23,26,28,31,36,38,41,45)$ | 
| 15C2 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 9,13,21,26,32,37,45, 5,10,18,22,29,36,42)( 2, 7,15,19,25,31,39,44, 4,11,17,23,30,35,41)( 3, 8,14,20,27,33,38,43, 6,12,16,24,28,34,40)$ | 
| 15C-2 | $15^{3}$ | $4$ | $15$ | $42$ | $( 1, 7,14,21,25,33,37,44, 6,10,17,24,29,35,40)( 2, 8,13,19,27,32,39,43, 5,11,16,22,30,34,42)( 3, 9,15,20,26,31,38,45, 4,12,18,23,28,36,41)$ | 
Malle's constant $a(G)$: $1/20$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 5A1 | 5A2 | 6A | 6B | 10A1 | 10A3 | 15A1 | 15A2 | 15B1 | 15B2 | 15C1 | 15C-1 | 15C2 | 15C-2 | ||
| Size | 1 | 9 | 15 | 15 | 2 | 2 | 4 | 2 | 2 | 30 | 30 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 5A2 | 5A1 | 3A | 3B | 5A2 | 5A1 | 15A2 | 15A1 | 15B2 | 15B1 | 15C2 | 15C-2 | 15C-1 | 15C1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 5A2 | 5A1 | 2B | 2C | 10A3 | 10A1 | 5A1 | 5A2 | 5A2 | 5A1 | 5A1 | 5A1 | 5A2 | 5A2 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 3B | 3C | 1A | 1A | 6A | 6B | 2A | 2A | 3A | 3A | 3B | 3B | 3C | 3C | 3C | 3C | |
| Type | ||||||||||||||||||||||
| 180.30.1a | R | |||||||||||||||||||||
| 180.30.1b | R | |||||||||||||||||||||
| 180.30.1c | R | |||||||||||||||||||||
| 180.30.1d | R | |||||||||||||||||||||
| 180.30.2a | R | |||||||||||||||||||||
| 180.30.2b | R | |||||||||||||||||||||
| 180.30.2c | R | |||||||||||||||||||||
| 180.30.2d | R | |||||||||||||||||||||
| 180.30.2e1 | R | |||||||||||||||||||||
| 180.30.2e2 | R | |||||||||||||||||||||
| 180.30.2f1 | R | |||||||||||||||||||||
| 180.30.2f2 | R | |||||||||||||||||||||
| 180.30.4a | R | |||||||||||||||||||||
| 180.30.4b1 | R | |||||||||||||||||||||
| 180.30.4b2 | R | |||||||||||||||||||||
| 180.30.4c1 | R | |||||||||||||||||||||
| 180.30.4c2 | R | |||||||||||||||||||||
| 180.30.4d1 | C | |||||||||||||||||||||
| 180.30.4d2 | C | |||||||||||||||||||||
| 180.30.4d3 | C | |||||||||||||||||||||
| 180.30.4d4 | C | 
Regular extensions
Data not computed