Properties

Label 45T144
Order \(1080\)
n \(45\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $45$
Transitive number $t$ :  $144$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,22,10,5)(2,24,12,6)(3,23,11,4)(7,26,34,17)(8,27,36,16)(9,25,35,18)(13,28)(14,30)(15,29)(19,31,37,41)(20,32,39,40)(21,33,38,42)(43,44), (1,42,44,20,32,26,29,5,16,10,15,36,3,40,45,21,31,27,30,6,18,11,13,34,2,41,43,19,33,25,28,4,17,12,14,35)(7,38,22,9,37,24,8,39,23)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_4$ x 2, $C_2^2$
6:  $S_3$, $C_6$ x 3
8:  $C_4\times C_2$
12:  $D_{6}$
18:  $S_3\times C_3$
20:  $F_5$
40:  $F_{5}\times C_2$
54:  $(C_9:C_3):C_2$

Resolvents shown for degrees $\leq 10$

Subfields

Degree 3: $S_3$

Degree 5: $F_5$

Degree 9: $(C_9:C_3):C_2$

Degree 15: $F_5 \times S_3$

Low degree siblings

There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy Classes

There are 50 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1080=2^{3} \cdot 3^{3} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [1080, 271]
Character table: Data not available.