Show commands: Magma
Group invariants
| Abstract group: | $C_{11}^2:C_8$ |
| |
| Order: | $968=2^{3} \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $44$ |
| |
| Transitive number $t$: | $42$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7)(2,6)(3,5)(8,11)(9,10)(12,16)(13,15)(17,22)(18,21)(19,20)(23,33)(24,32)(25,31)(26,30)(27,29)(34,40)(35,39)(36,38)(41,44)(42,43)$, $(1,14,29,39,9,16,25,38)(2,17,23,43,8,13,31,34)(3,20,28,36,7,21,26,41)(4,12,33,40,6,18,32,37)(5,15,27,44)(10,19,30,42,11,22,24,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 11: None
Degree 22: None
Low degree siblings
44T42 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{44}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{20},1^{4}$ | $121$ | $2$ | $20$ | $( 1, 4)( 2, 3)( 5,11)( 6,10)( 7, 9)(13,22)(14,21)(15,20)(16,19)(17,18)(23,31)(24,30)(25,29)(26,28)(32,33)(34,35)(36,44)(37,43)(38,42)(39,41)$ |
| 4A1 | $4^{10},2^{2}$ | $121$ | $4$ | $32$ | $( 1,25, 4,29)( 2,30, 3,24)( 5,23,11,31)( 6,28,10,26)( 7,33, 9,32)( 8,27)(12,40)(13,34,22,35)(14,39,21,41)(15,44,20,36)(16,38,19,42)(17,43,18,37)$ |
| 4A-1 | $4^{10},2^{2}$ | $121$ | $4$ | $32$ | $( 1,29, 4,25)( 2,24, 3,30)( 5,31,11,23)( 6,26,10,28)( 7,32, 9,33)( 8,27)(12,40)(13,35,22,34)(14,41,21,39)(15,36,20,44)(16,42,19,38)(17,37,18,43)$ |
| 8A1 | $8^{5},4$ | $121$ | $8$ | $38$ | $( 1,13,25,34, 4,22,29,35)( 2,16,30,38, 3,19,24,42)( 5,14,23,39,11,21,31,41)( 6,17,28,43,10,18,26,37)( 7,20,33,36, 9,15,32,44)( 8,12,27,40)$ |
| 8A-1 | $8^{5},4$ | $121$ | $8$ | $38$ | $( 1,35,29,22, 4,34,25,13)( 2,42,24,19, 3,38,30,16)( 5,41,31,21,11,39,23,14)( 6,37,26,18,10,43,28,17)( 7,44,32,15, 9,36,33,20)( 8,40,27,12)$ |
| 8A3 | $8^{5},4$ | $121$ | $8$ | $38$ | $( 1,34,29,13, 4,35,25,22)( 2,38,24,16, 3,42,30,19)( 5,39,31,14,11,41,23,21)( 6,43,26,17,10,37,28,18)( 7,36,32,20, 9,44,33,15)( 8,40,27,12)$ |
| 8A-3 | $8^{5},4$ | $121$ | $8$ | $38$ | $( 1,22,25,35, 4,13,29,34)( 2,19,30,42, 3,16,24,38)( 5,21,23,41,11,14,31,39)( 6,18,28,37,10,17,26,43)( 7,15,33,44, 9,20,32,36)( 8,12,27,40)$ |
| 11A1 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,14,16,18,20,22,13,15,17,19,21)(23,32,30,28,26,24,33,31,29,27,25)(34,37,40,43,35,38,41,44,36,39,42)$ |
| 11A2 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,16,20,13,17,21,14,18,22,15,19)(23,30,26,33,29,25,32,28,24,31,27)(34,40,35,41,36,42,37,43,38,44,39)$ |
| 11A3 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,18,13,19,14,20,15,21,16,22,17)(23,28,33,27,32,26,31,25,30,24,29)(34,43,41,39,37,35,44,42,40,38,36)$ |
| 11A4 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,20,17,14,22,19,16,13,21,18,15)(23,26,29,32,24,27,30,33,25,28,31)(34,35,36,37,38,39,40,41,42,43,44)$ |
| 11A5 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,22,21,20,19,18,17,16,15,14,13)(23,24,25,26,27,28,29,30,31,32,33)(34,38,42,35,39,43,36,40,44,37,41)$ |
| 11B1 | $11^{3},1^{11}$ | $8$ | $11$ | $30$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,19,15,22,18,14,21,17,13,20,16)(23,24,25,26,27,28,29,30,31,32,33)$ |
| 11B2 | $11^{3},1^{11}$ | $8$ | $11$ | $30$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,15,18,21,13,16,19,22,14,17,20)(23,25,27,29,31,33,24,26,28,30,32)$ |
| 11B3 | $11^{3},1^{11}$ | $8$ | $11$ | $30$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,22,21,20,19,18,17,16,15,14,13)(23,26,29,32,24,27,30,33,25,28,31)$ |
| 11B4 | $11^{3},1^{11}$ | $8$ | $11$ | $30$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,18,13,19,14,20,15,21,16,22,17)(23,27,31,24,28,32,25,29,33,26,30)$ |
| 11B5 | $11^{3},1^{11}$ | $8$ | $11$ | $30$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,14,16,18,20,22,13,15,17,19,21)(23,28,33,27,32,26,31,25,30,24,29)$ |
| 11C1 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,21,19,17,15,13,22,20,18,16,14)(23,33,32,31,30,29,28,27,26,25,24)(34,37,40,43,35,38,41,44,36,39,42)$ |
| 11C2 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)(23,32,30,28,26,24,33,31,29,27,25)(34,40,35,41,36,42,37,43,38,44,39)$ |
| 11C3 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,17,22,16,21,15,20,14,19,13,18)(23,31,28,25,33,30,27,24,32,29,26)(34,43,41,39,37,35,44,42,40,38,36)$ |
| 11C4 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,21,19,17,15,13,22,20,18,16,14)(23,30,26,33,29,25,32,28,24,31,27)(34,43,41,39,37,35,44,42,40,38,36)$ |
| 11C5 | $11^{4}$ | $8$ | $11$ | $40$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,15,18,21,13,16,19,22,14,17,20)(23,33,32,31,30,29,28,27,26,25,24)(34,40,35,41,36,42,37,43,38,44,39)$ |
Malle's constant $a(G)$: $1/20$
Character table
| 1A | 2A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | 11A1 | 11A2 | 11A3 | 11A4 | 11A5 | 11B1 | 11B2 | 11B3 | 11B4 | 11B5 | 11C1 | 11C2 | 11C3 | 11C4 | 11C5 | ||
| Size | 1 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | 11A2 | 11A4 | 11A5 | 11A3 | 11A1 | 11B2 | 11B4 | 11B5 | 11B3 | 11B1 | 11C2 | 11C4 | 11C5 | 11C3 | 11C1 | |
| 11 P | 1A | 2A | 4A1 | 4A-1 | 8A-3 | 8A3 | 8A-1 | 8A1 | 11A5 | 11A1 | 11A4 | 11A2 | 11A3 | 11B5 | 11B1 | 11B4 | 11B2 | 11B3 | 11C5 | 11C1 | 11C4 | 11C2 | 11C3 | |
| Type | ||||||||||||||||||||||||
| 968.35.1a | R | |||||||||||||||||||||||
| 968.35.1b | R | |||||||||||||||||||||||
| 968.35.1c1 | C | |||||||||||||||||||||||
| 968.35.1c2 | C | |||||||||||||||||||||||
| 968.35.1d1 | C | |||||||||||||||||||||||
| 968.35.1d2 | C | |||||||||||||||||||||||
| 968.35.1d3 | C | |||||||||||||||||||||||
| 968.35.1d4 | C | |||||||||||||||||||||||
| 968.35.8a1 | R | |||||||||||||||||||||||
| 968.35.8a2 | R | |||||||||||||||||||||||
| 968.35.8a3 | R | |||||||||||||||||||||||
| 968.35.8a4 | R | |||||||||||||||||||||||
| 968.35.8a5 | R | |||||||||||||||||||||||
| 968.35.8b1 | R | |||||||||||||||||||||||
| 968.35.8b2 | R | |||||||||||||||||||||||
| 968.35.8b3 | R | |||||||||||||||||||||||
| 968.35.8b4 | R | |||||||||||||||||||||||
| 968.35.8b5 | R | |||||||||||||||||||||||
| 968.35.8c1 | R | |||||||||||||||||||||||
| 968.35.8c2 | R | |||||||||||||||||||||||
| 968.35.8c3 | R | |||||||||||||||||||||||
| 968.35.8c4 | R | |||||||||||||||||||||||
| 968.35.8c5 | R |
Regular extensions
Data not computed