Properties

Label 44T42
44T42 1 7 1->7 14 1->14 2 6 2->6 17 2->17 3 5 3->5 20 3->20 4 12 4->12 15 5->15 18 6->18 21 7->21 8 11 8->11 13 8->13 9 10 9->10 16 9->16 19 10->19 22 11->22 12->16 33 12->33 13->15 31 13->31 29 14->29 27 15->27 25 16->25 17->22 23 17->23 18->21 32 18->32 19->20 30 19->30 28 20->28 26 21->26 24 22->24 23->33 43 23->43 24->32 35 24->35 25->31 38 25->38 26->30 41 26->41 27->29 44 27->44 36 28->36 39 29->39 42 30->42 34 31->34 37 32->37 40 33->40 34->2 34->40 35->10 35->39 36->7 36->38 37->4 38->1 39->9 40->6 41->3 41->44 42->11 42->43 43->8 44->5
Degree $44$
Order $968$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{11}^2:C_8$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(44, 42);
 

Group invariants

Abstract group:  $C_{11}^2:C_8$
Copy content magma:IdentifyGroup(G);
 
Order:  $968=2^{3} \cdot 11^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $44$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $42$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7)(2,6)(3,5)(8,11)(9,10)(12,16)(13,15)(17,22)(18,21)(19,20)(23,33)(24,32)(25,31)(26,30)(27,29)(34,40)(35,39)(36,38)(41,44)(42,43)$, $(1,14,29,39,9,16,25,38)(2,17,23,43,8,13,31,34)(3,20,28,36,7,21,26,41)(4,12,33,40,6,18,32,37)(5,15,27,44)(10,19,30,42,11,22,24,35)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$8$:  $C_8$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 11: None

Degree 22: None

Low degree siblings

44T42 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{44}$ $1$ $1$ $0$ $()$
2A $2^{20},1^{4}$ $121$ $2$ $20$ $( 1, 4)( 2, 3)( 5,11)( 6,10)( 7, 9)(13,22)(14,21)(15,20)(16,19)(17,18)(23,31)(24,30)(25,29)(26,28)(32,33)(34,35)(36,44)(37,43)(38,42)(39,41)$
4A1 $4^{10},2^{2}$ $121$ $4$ $32$ $( 1,25, 4,29)( 2,30, 3,24)( 5,23,11,31)( 6,28,10,26)( 7,33, 9,32)( 8,27)(12,40)(13,34,22,35)(14,39,21,41)(15,44,20,36)(16,38,19,42)(17,43,18,37)$
4A-1 $4^{10},2^{2}$ $121$ $4$ $32$ $( 1,29, 4,25)( 2,24, 3,30)( 5,31,11,23)( 6,26,10,28)( 7,32, 9,33)( 8,27)(12,40)(13,35,22,34)(14,41,21,39)(15,36,20,44)(16,42,19,38)(17,37,18,43)$
8A1 $8^{5},4$ $121$ $8$ $38$ $( 1,13,25,34, 4,22,29,35)( 2,16,30,38, 3,19,24,42)( 5,14,23,39,11,21,31,41)( 6,17,28,43,10,18,26,37)( 7,20,33,36, 9,15,32,44)( 8,12,27,40)$
8A-1 $8^{5},4$ $121$ $8$ $38$ $( 1,35,29,22, 4,34,25,13)( 2,42,24,19, 3,38,30,16)( 5,41,31,21,11,39,23,14)( 6,37,26,18,10,43,28,17)( 7,44,32,15, 9,36,33,20)( 8,40,27,12)$
8A3 $8^{5},4$ $121$ $8$ $38$ $( 1,34,29,13, 4,35,25,22)( 2,38,24,16, 3,42,30,19)( 5,39,31,14,11,41,23,21)( 6,43,26,17,10,37,28,18)( 7,36,32,20, 9,44,33,15)( 8,40,27,12)$
8A-3 $8^{5},4$ $121$ $8$ $38$ $( 1,22,25,35, 4,13,29,34)( 2,19,30,42, 3,16,24,38)( 5,21,23,41,11,14,31,39)( 6,18,28,37,10,17,26,43)( 7,15,33,44, 9,20,32,36)( 8,12,27,40)$
11A1 $11^{4}$ $8$ $11$ $40$ $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,14,16,18,20,22,13,15,17,19,21)(23,32,30,28,26,24,33,31,29,27,25)(34,37,40,43,35,38,41,44,36,39,42)$
11A2 $11^{4}$ $8$ $11$ $40$ $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,16,20,13,17,21,14,18,22,15,19)(23,30,26,33,29,25,32,28,24,31,27)(34,40,35,41,36,42,37,43,38,44,39)$
11A3 $11^{4}$ $8$ $11$ $40$ $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,18,13,19,14,20,15,21,16,22,17)(23,28,33,27,32,26,31,25,30,24,29)(34,43,41,39,37,35,44,42,40,38,36)$
11A4 $11^{4}$ $8$ $11$ $40$ $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,20,17,14,22,19,16,13,21,18,15)(23,26,29,32,24,27,30,33,25,28,31)(34,35,36,37,38,39,40,41,42,43,44)$
11A5 $11^{4}$ $8$ $11$ $40$ $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,22,21,20,19,18,17,16,15,14,13)(23,24,25,26,27,28,29,30,31,32,33)(34,38,42,35,39,43,36,40,44,37,41)$
11B1 $11^{3},1^{11}$ $8$ $11$ $30$ $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,19,15,22,18,14,21,17,13,20,16)(23,24,25,26,27,28,29,30,31,32,33)$
11B2 $11^{3},1^{11}$ $8$ $11$ $30$ $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,15,18,21,13,16,19,22,14,17,20)(23,25,27,29,31,33,24,26,28,30,32)$
11B3 $11^{3},1^{11}$ $8$ $11$ $30$ $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,22,21,20,19,18,17,16,15,14,13)(23,26,29,32,24,27,30,33,25,28,31)$
11B4 $11^{3},1^{11}$ $8$ $11$ $30$ $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,18,13,19,14,20,15,21,16,22,17)(23,27,31,24,28,32,25,29,33,26,30)$
11B5 $11^{3},1^{11}$ $8$ $11$ $30$ $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,14,16,18,20,22,13,15,17,19,21)(23,28,33,27,32,26,31,25,30,24,29)$
11C1 $11^{4}$ $8$ $11$ $40$ $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,21,19,17,15,13,22,20,18,16,14)(23,33,32,31,30,29,28,27,26,25,24)(34,37,40,43,35,38,41,44,36,39,42)$
11C2 $11^{4}$ $8$ $11$ $40$ $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)(23,32,30,28,26,24,33,31,29,27,25)(34,40,35,41,36,42,37,43,38,44,39)$
11C3 $11^{4}$ $8$ $11$ $40$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,17,22,16,21,15,20,14,19,13,18)(23,31,28,25,33,30,27,24,32,29,26)(34,43,41,39,37,35,44,42,40,38,36)$
11C4 $11^{4}$ $8$ $11$ $40$ $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,21,19,17,15,13,22,20,18,16,14)(23,30,26,33,29,25,32,28,24,31,27)(34,43,41,39,37,35,44,42,40,38,36)$
11C5 $11^{4}$ $8$ $11$ $40$ $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,15,18,21,13,16,19,22,14,17,20)(23,33,32,31,30,29,28,27,26,25,24)(34,40,35,41,36,42,37,43,38,44,39)$

Malle's constant $a(G)$:     $1/20$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 8A1 8A-1 8A3 8A-3 11A1 11A2 11A3 11A4 11A5 11B1 11B2 11B3 11B4 11B5 11C1 11C2 11C3 11C4 11C5
Size 1 121 121 121 121 121 121 121 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 P 1A 1A 2A 2A 4A1 4A-1 4A-1 4A1 11A2 11A4 11A5 11A3 11A1 11B2 11B4 11B5 11B3 11B1 11C2 11C4 11C5 11C3 11C1
11 P 1A 2A 4A1 4A-1 8A-3 8A3 8A-1 8A1 11A5 11A1 11A4 11A2 11A3 11B5 11B1 11B4 11B2 11B3 11C5 11C1 11C4 11C2 11C3
Type
968.35.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1c1 C 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1c2 C 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1d1 C 1 1 ζ82 ζ82 ζ83 ζ83 ζ8 ζ8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1d2 C 1 1 ζ82 ζ82 ζ8 ζ8 ζ83 ζ83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1d3 C 1 1 ζ82 ζ82 ζ83 ζ83 ζ8 ζ8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.1d4 C 1 1 ζ82 ζ82 ζ8 ζ8 ζ83 ζ83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
968.35.8a1 R 8 0 0 0 0 0 0 0 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115+2ζ112+2+2ζ112+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115+ζ114+2+ζ114+2ζ115
968.35.8a2 R 8 0 0 0 0 0 0 0 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ114+ζ111+2+ζ11+2ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ113+2ζ111+2+2ζ11+ζ113 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ113+ζ112+2+ζ112+2ζ113 2ζ115+ζ114+2+ζ114+2ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ112+2+2ζ112+ζ115
968.35.8a3 R 8 0 0 0 0 0 0 0 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 2ζ113+ζ112+2+ζ112+2ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ113+2ζ111+2+2ζ11+ζ113
968.35.8a4 R 8 0 0 0 0 0 0 0 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115+ζ114+2+ζ114+2ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ114+ζ111+2+ζ11+2ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ115+2ζ112+2+2ζ112+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113
968.35.8a5 R 8 0 0 0 0 0 0 0 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ115+ζ114+2+ζ114+2ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ114+ζ111+2+ζ11+2ζ114
968.35.8b1 R 8 0 0 0 0 0 0 0 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ113+2ζ111+2+2ζ11+ζ113 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ112+2+2ζ112+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ114+ζ111+2+ζ11+2ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115
968.35.8b2 R 8 0 0 0 0 0 0 0 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ114+ζ111+2+ζ11+2ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ112+2+2ζ112+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ113+ζ112+2+ζ112+2ζ113 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115
968.35.8b3 R 8 0 0 0 0 0 0 0 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115+ζ114+2+ζ114+2ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ112+2+2ζ112+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114
968.35.8b4 R 8 0 0 0 0 0 0 0 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ114+ζ111+2+ζ11+2ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ113+ζ112+2+ζ112+2ζ113 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115
968.35.8b5 R 8 0 0 0 0 0 0 0 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ113+2ζ111+2+2ζ11+ζ113 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114
968.35.8c1 R 8 0 0 0 0 0 0 0 2ζ115+ζ114+2+ζ114+2ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ113+ζ112+2+ζ112+2ζ113 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ114+ζ111+2+ζ11+2ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114
968.35.8c2 R 8 0 0 0 0 0 0 0 2ζ114+ζ111+2+ζ11+2ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ115+ζ114+2+ζ114+2ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ112+2+2ζ112+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ113+ζ112+2+ζ112+2ζ113 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114
968.35.8c3 R 8 0 0 0 0 0 0 0 ζ115+2ζ112+2+2ζ112+ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 2ζ113+ζ112+2+ζ112+2ζ113 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ113+2ζ111+2+2ζ11+ζ113 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115+ζ114+2+ζ114+2ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115
968.35.8c4 R 8 0 0 0 0 0 0 0 2ζ113+ζ112+2+ζ112+2ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ114+ζ111+2+ζ11+2ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115+ζ114+2+ζ114+2ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 ζ115+2ζ112+2+2ζ112+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115
968.35.8c5 R 8 0 0 0 0 0 0 0 ζ113+2ζ111+2+2ζ11+ζ113 ζ114+ζ113ζ1121ζ112+ζ113ζ114 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ115ζ1142ζ113ζ1122ζ1122ζ113ζ1142ζ115 2ζ114+ζ111+2+ζ11+2ζ114 ζ114+ζ113ζ1121ζ112+ζ113ζ114 ζ115ζ114ζ1131ζ113ζ114+ζ115 2ζ115+ζ114+2+ζ114+2ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ112+2+2ζ112+ζ115 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 ζ114+ζ113+2ζ112+2ζ112+ζ113+ζ114 ζ115+2ζ114+ζ113+ζ113+2ζ114+ζ115 2ζ113+ζ112+2+ζ112+2ζ113 ζ115ζ114ζ1131ζ113ζ114+ζ115

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed