Show commands: Magma
Group invariants
| Abstract group: | $C_{11}\times A_4$ |
| |
| Order: | $132=2^{2} \cdot 3 \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $44$ |
| |
| Transitive number $t$: | $11$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $11$ |
| |
| Generators: | $(1,13,28,39,6,19,30,42,12,24,33,4,16,25,38,7,18,31,43,9,21,36)(2,14,27,40,5,20,29,41,11,23,34,3,15,26,37,8,17,32,44,10,22,35)$, $(1,11,19,28,34,42,6,15,24,30,37,4,12,17,25,33,44,7,16,22,31,38,2,9,18,27,36,43,5,13,21,29,39)(3,10,20,26,35,41,8,14,23,32,40)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $11$: $C_{11}$ $12$: $A_4$ $33$: $C_{33}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Degree 11: $C_{11}$
Degree 22: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{44}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{22}$ | $3$ | $2$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)$ |
| 3A1 | $3^{11},1^{11}$ | $4$ | $3$ | $22$ | $( 2, 4, 3)( 5, 7, 8)( 9,10,11)(13,14,15)(17,19,20)(22,24,23)(25,26,27)(29,31,32)(34,36,35)(37,39,40)(41,44,42)$ |
| 3A-1 | $3^{11},1^{11}$ | $4$ | $3$ | $22$ | $( 2, 3, 4)( 5, 8, 7)( 9,11,10)(13,15,14)(17,20,19)(22,23,24)(25,27,26)(29,32,31)(34,35,36)(37,40,39)(41,42,44)$ |
| 11A1 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,12,18,28,33,43, 6,16,21,30,38)( 2,11,17,27,34,44, 5,15,22,29,37)( 3,10,20,26,35,41, 8,14,23,32,40)( 4, 9,19,25,36,42, 7,13,24,31,39)$ |
| 11A-1 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,38,30,21,16, 6,43,33,28,18,12)( 2,37,29,22,15, 5,44,34,27,17,11)( 3,40,32,23,14, 8,41,35,26,20,10)( 4,39,31,24,13, 7,42,36,25,19, 9)$ |
| 11A2 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,18,33, 6,21,38,12,28,43,16,30)( 2,17,34, 5,22,37,11,27,44,15,29)( 3,20,35, 8,23,40,10,26,41,14,32)( 4,19,36, 7,24,39, 9,25,42,13,31)$ |
| 11A-2 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,30,16,43,28,12,38,21, 6,33,18)( 2,29,15,44,27,11,37,22, 5,34,17)( 3,32,14,41,26,10,40,23, 8,35,20)( 4,31,13,42,25, 9,39,24, 7,36,19)$ |
| 11A3 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,28, 6,30,12,33,16,38,18,43,21)( 2,27, 5,29,11,34,15,37,17,44,22)( 3,26, 8,32,10,35,14,40,20,41,23)( 4,25, 7,31, 9,36,13,39,19,42,24)$ |
| 11A-3 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,21,43,18,38,16,33,12,30, 6,28)( 2,22,44,17,37,15,34,11,29, 5,27)( 3,23,41,20,40,14,35,10,32, 8,26)( 4,24,42,19,39,13,36, 9,31, 7,25)$ |
| 11A4 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,33,21,12,43,30,18, 6,38,28,16)( 2,34,22,11,44,29,17, 5,37,27,15)( 3,35,23,10,41,32,20, 8,40,26,14)( 4,36,24, 9,42,31,19, 7,39,25,13)$ |
| 11A-4 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,16,28,38, 6,18,30,43,12,21,33)( 2,15,27,37, 5,17,29,44,11,22,34)( 3,14,26,40, 8,20,32,41,10,23,35)( 4,13,25,39, 7,19,31,42, 9,24,36)$ |
| 11A5 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1,43,38,33,30,28,21,18,16,12, 6)( 2,44,37,34,29,27,22,17,15,11, 5)( 3,41,40,35,32,26,23,20,14,10, 8)( 4,42,39,36,31,25,24,19,13, 9, 7)$ |
| 11A-5 | $11^{4}$ | $1$ | $11$ | $40$ | $( 1, 6,12,16,18,21,28,30,33,38,43)( 2, 5,11,15,17,22,27,29,34,37,44)( 3, 8,10,14,20,23,26,32,35,40,41)( 4, 7, 9,13,19,24,25,31,36,39,42)$ |
| 22A1 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1, 5,12,15,18,22,28,29,33,37,43, 2, 6,11,16,17,21,27,30,34,38,44)( 3, 7,10,13,20,24,26,31,35,39,41, 4, 8, 9,14,19,23,25,32,36,40,42)$ |
| 22A-1 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,42,38,36,30,25,21,19,16, 9, 6, 4,43,39,33,31,28,24,18,13,12, 7)( 2,41,37,35,29,26,22,20,15,10, 5, 3,44,40,34,32,27,23,17,14,11, 8)$ |
| 22A3 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,15,28,37, 6,17,30,44,12,22,33, 2,16,27,38, 5,18,29,43,11,21,34)( 3,13,26,39, 8,19,32,42,10,24,35, 4,14,25,40, 7,20,31,41, 9,23,36)$ |
| 22A-3 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,36,21, 9,43,31,18, 7,38,25,16, 4,33,24,12,42,30,19, 6,39,28,13)( 2,35,22,10,44,32,17, 8,37,26,15, 3,34,23,11,41,29,20, 5,40,27,14)$ |
| 22A5 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,22,43,17,38,15,33,11,30, 5,28, 2,21,44,18,37,16,34,12,29, 6,27)( 3,24,41,19,40,13,35, 9,32, 7,26, 4,23,42,20,39,14,36,10,31, 8,25)$ |
| 22A-5 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,25, 6,31,12,36,16,39,18,42,21, 4,28, 7,30, 9,33,13,38,19,43,24)( 2,26, 5,32,11,35,15,40,17,41,22, 3,27, 8,29,10,34,14,37,20,44,23)$ |
| 22A7 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,29,16,44,28,11,38,22, 6,34,18, 2,30,15,43,27,12,37,21, 5,33,17)( 3,31,14,42,26, 9,40,24, 8,36,20, 4,32,13,41,25,10,39,23, 7,35,19)$ |
| 22A-7 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,19,33, 7,21,39,12,25,43,13,30, 4,18,36, 6,24,38, 9,28,42,16,31)( 2,20,34, 8,22,40,11,26,44,14,29, 3,17,35, 5,23,37,10,27,41,15,32)$ |
| 22A9 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1,37,30,22,16, 5,43,34,28,17,12, 2,38,29,21,15, 6,44,33,27,18,11)( 3,39,32,24,14, 7,41,36,26,19,10, 4,40,31,23,13, 8,42,35,25,20, 9)$ |
| 22A-9 | $22^{2}$ | $3$ | $22$ | $42$ | $( 1, 9,18,25,33,42, 6,13,21,31,38, 4,12,19,28,36,43, 7,16,24,30,39)( 2,10,17,26,34,41, 5,14,22,32,37, 3,11,20,27,35,44, 8,15,23,29,40)$ |
| 33A1 | $33,11$ | $4$ | $33$ | $42$ | $( 1,12,18,28,33,43, 6,16,21,30,38)( 2,10,19,27,35,42, 5,14,24,29,40, 4,11,20,25,34,41, 7,15,23,31,37, 3, 9,17,26,36,44, 8,13,22,32,39)$ |
| 33A-1 | $33,11$ | $4$ | $33$ | $42$ | $( 1,38,30,21,16, 6,43,33,28,18,12)( 2,39,32,22,13, 8,44,36,26,17, 9, 3,37,31,23,15, 7,41,34,25,20,11, 4,40,29,24,14, 5,42,35,27,19,10)$ |
| 33A2 | $33,11$ | $4$ | $33$ | $42$ | $( 1,18,33, 6,21,38,12,28,43,16,30)( 2,19,35, 5,24,40,11,25,41,15,31, 3,17,36, 8,22,39,10,27,42,14,29, 4,20,34, 7,23,37, 9,26,44,13,32)$ |
| 33A-2 | $33,11$ | $4$ | $33$ | $42$ | $( 1,30,16,43,28,12,38,21, 6,33,18)( 2,32,13,44,26, 9,37,23, 7,34,20, 4,29,14,42,27,10,39,22, 8,36,17, 3,31,15,41,25,11,40,24, 5,35,19)$ |
| 33A4 | $33,11$ | $4$ | $33$ | $42$ | $( 1,33,21,12,43,30,18, 6,38,28,16)( 2,35,24,11,41,31,17, 8,39,27,14, 4,34,23, 9,44,32,19, 5,40,25,15, 3,36,22,10,42,29,20, 7,37,26,13)$ |
| 33A-4 | $33,11$ | $4$ | $33$ | $42$ | $( 1,16,28,38, 6,18,30,43,12,21,33)( 2,13,26,37, 7,20,29,42,10,22,36, 3,15,25,40, 5,19,32,44, 9,23,34, 4,14,27,39, 8,17,31,41,11,24,35)$ |
| 33A5 | $33,11$ | $4$ | $33$ | $42$ | $( 1,43,38,33,30,28,21,18,16,12, 6)( 2,42,40,34,31,26,22,19,14,11, 7, 3,44,39,35,29,25,23,17,13,10, 5, 4,41,37,36,32,27,24,20,15, 9, 8)$ |
| 33A-5 | $33,11$ | $4$ | $33$ | $42$ | $( 1, 5, 9,16,17,24,28,29,36,38,44, 4, 6,11,13,18,22,25,30,34,39,43, 2, 7,12,15,19,21,27,31,33,37,42)( 3, 8,10,14,20,23,26,32,35,40,41)$ |
| 33A7 | $33,11$ | $4$ | $33$ | $42$ | $( 1,16,28,38, 6,18,30,43,12,21,33)( 2,14,25,37, 8,19,29,41, 9,22,35, 4,15,26,39, 5,20,31,44,10,24,34, 3,13,27,40, 7,17,32,42,11,23,36)$ |
| 33A-7 | $33,11$ | $4$ | $33$ | $42$ | $( 1,33,21,12,43,30,18, 6,38,28,16)( 2,36,23,11,42,32,17, 7,40,27,13, 3,34,24,10,44,31,20, 5,39,26,15, 4,35,22, 9,41,29,19, 8,37,25,14)$ |
| 33A8 | $33,11$ | $4$ | $33$ | $42$ | $( 1,21,43,18,38,16,33,12,30, 6,28)( 2,24,41,17,39,14,34, 9,32, 5,25, 3,22,42,20,37,13,35,11,31, 8,27, 4,23,44,19,40,15,36,10,29, 7,26)$ |
| 33A-8 | $33,11$ | $4$ | $33$ | $42$ | $( 1,28, 6,30,12,33,16,38,18,43,21)( 2,26, 7,29,10,36,15,40,19,44,23, 4,27, 8,31,11,35,13,37,20,42,22, 3,25, 5,32, 9,34,14,39,17,41,24)$ |
| 33A10 | $33,11$ | $4$ | $33$ | $42$ | $( 1,38,30,21,16, 6,43,33,28,18,12)( 2,40,31,22,14, 7,44,35,25,17,10, 4,37,32,24,15, 8,42,34,26,19,11, 3,39,29,23,13, 5,41,36,27,20, 9)$ |
| 33A-10 | $33,11$ | $4$ | $33$ | $42$ | $( 1,12,18,28,33,43, 6,16,21,30,38)( 2, 9,20,27,36,41, 5,13,23,29,39, 3,11,19,26,34,42, 8,15,24,32,37, 4,10,17,25,35,44, 7,14,22,31,40)$ |
| 33A13 | $33,11$ | $4$ | $33$ | $42$ | $( 1,18,33, 6,21,38,12,28,43,16,30)( 2,20,36, 5,23,39,11,26,42,15,32, 4,17,35, 7,22,40, 9,27,41,13,29, 3,19,34, 8,24,37,10,25,44,14,31)$ |
| 33A-13 | $33,11$ | $4$ | $33$ | $42$ | $( 1,30,16,43,28,12,38,21, 6,33,18)( 2,31,14,44,25,10,37,24, 8,34,19, 3,29,13,41,27, 9,40,22, 7,35,17, 4,32,15,42,26,11,39,23, 5,36,20)$ |
| 33A14 | $33,11$ | $4$ | $33$ | $42$ | $( 1,28, 6,30,12,33,16,38,18,43,21)( 2,25, 8,29, 9,35,15,39,20,44,24, 3,27, 7,32,11,36,14,37,19,41,22, 4,26, 5,31,10,34,13,40,17,42,23)$ |
| 33A-14 | $33,11$ | $4$ | $33$ | $42$ | $( 1,21,43,18,38,16,33,12,30, 6,28)( 2,23,42,17,40,13,34,10,31, 5,26, 4,22,41,19,37,14,36,11,32, 7,27, 3,24,44,20,39,15,35, 9,29, 8,25)$ |
| 33A16 | $33,11$ | $4$ | $33$ | $42$ | $( 1,43,38,33,30,28,21,18,16,12, 6)( 2,41,39,34,32,25,22,20,13,11, 8, 4,44,40,36,29,26,24,17,14, 9, 5, 3,42,37,35,31,27,23,19,15,10, 7)$ |
| 33A-16 | $33,11$ | $4$ | $33$ | $42$ | $( 1, 5,10,16,17,23,28,29,35,38,44, 3, 6,11,14,18,22,26,30,34,40,43, 2, 8,12,15,20,21,27,32,33,37,41)( 4, 7, 9,13,19,24,25,31,36,39,42)$ |
Malle's constant $a(G)$: $1/22$
Character table
44 x 44 character table
Regular extensions
Data not computed