Group action invariants
| Degree $n$ : | $42$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $F_7$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,31,30,12,40)(2,19,32,29,11,39)(3,24,33,28,8,42)(4,23,34,27,7,41)(5,21,36,25,10,38)(6,22,35,26,9,37)(13,15,18,14,16,17), (1,27,33)(2,28,34)(3,26,36)(4,25,35)(5,29,31)(6,30,32)(7,40,17)(8,39,18)(9,42,15)(10,41,16)(11,38,14)(12,37,13)(19,23,22)(20,24,21) | |
| $|\Aut(F/K)|$: | $42$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Degree 7: $F_7$
Degree 14: $F_7$
Degree 21: 21T4
Low degree siblings
7T4Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)(13,32)(14,31) (15,36)(16,35)(17,33)(18,34)(19,25)(20,26)(21,27)(22,28)(23,30)(24,29)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $7$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,14,25)( 8,13,26)( 9,17,30)(10,18,29)(11,15,28) (12,16,27)(19,37,31)(20,38,32)(21,42,35)(22,41,36)(23,39,33)(24,40,34)$ |
| $ 6, 6, 6, 6, 6, 6, 6 $ | $7$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7,31,25,37,14,19)( 8,32,26,38,13,20)( 9,33,30,39,17,23) (10,34,29,40,18,24)(11,36,28,41,15,22)(12,35,27,42,16,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $7$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,25,14)( 8,26,13)( 9,30,17)(10,29,18)(11,28,15) (12,27,16)(19,31,37)(20,32,38)(21,35,42)(22,36,41)(23,33,39)(24,34,40)$ |
| $ 6, 6, 6, 6, 6, 6, 6 $ | $7$ | $6$ | $( 1, 6, 3, 2, 5, 4)( 7,19,14,37,25,31)( 8,20,13,38,26,32)( 9,23,17,39,30,33) (10,24,18,40,29,34)(11,22,15,41,28,36)(12,21,16,42,27,35)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $6$ | $7$ | $( 1, 8,16,23,29,36,37)( 2, 7,15,24,30,35,38)( 3,10,13,22,27,31,39) ( 4, 9,14,21,28,32,40)( 5,12,18,19,26,33,41)( 6,11,17,20,25,34,42)$ |
Group invariants
| Order: | $42=2 \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [42, 1] |
| Character table: |
2 1 1 1 1 1 1 .
3 1 1 1 1 1 1 .
7 1 . . . . . 1
1a 2a 3a 6a 3b 6b 7a
2P 1a 1a 3b 3b 3a 3a 7a
3P 1a 2a 1a 2a 1a 2a 7a
5P 1a 2a 3b 6b 3a 6a 7a
7P 1a 2a 3a 6a 3b 6b 1a
X.1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1
X.3 1 -1 A -A /A -/A 1
X.4 1 -1 /A -/A A -A 1
X.5 1 1 A A /A /A 1
X.6 1 1 /A /A A A 1
X.7 6 . . . . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|