Group action invariants
| Degree $n$ : | $42$ | |
| Transitive number $t$ : | $38$ | |
| Group : | $\PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,24,40,9,25,35,14)(2,23,39,10,26,36,13)(3,19,42,11,28,31,18)(4,20,41,12,27,32,17)(5,21,38,8,30,34,15)(6,22,37,7,29,33,16), (1,32,39,24)(2,31,40,23)(3,35,37,21)(4,36,38,22)(5,33,42,19)(6,34,41,20)(7,25,11,29)(8,26,12,30)(9,28)(10,27)(13,17,14,18)(15,16) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: $\GL(3,2)$ x 2
Degree 14: $\PSL(2,7)$
Degree 21: $\PSL(2,7)$
Low degree siblings
7T5 x 2, 8T37Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 3, 4)( 5, 6)( 9,12)(10,11)(13,37)(14,38)(15,39)(16,40)(17,42)(18,41)(21,24) (22,23)(25,31)(26,32)(27,33)(28,34)(29,36)(30,35)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2 $ | $42$ | $4$ | $( 1, 2)( 3, 5, 4, 6)( 7,19)( 8,20)( 9,21,12,24)(10,22,11,23)(13,31,37,25) (14,32,38,26)(15,35,39,30)(16,36,40,29)(17,34,42,28)(18,33,41,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,38,26)( 8,37,25)( 9,40,30)(10,39,29)(11,41,28) (12,42,27)(13,31,20)(14,32,19)(15,34,24)(16,33,23)(17,35,22)(18,36,21)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 9,18,24,26,34,37)( 2,10,17,23,25,33,38)( 3, 8,15,22,30,32,40) ( 4, 7,16,21,29,31,39)( 5,11,14,20,27,36,41)( 6,12,13,19,28,35,42)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 9,14,40,35,24,25)( 2,10,13,39,36,23,26)( 3,11,18,42,31,19,28) ( 4,12,17,41,32,20,27)( 5, 8,15,38,34,21,30)( 6, 7,16,37,33,22,29)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 3 2 . . .
3 1 . . 1 . .
7 1 . . . 1 1
1a 2a 4a 3a 7a 7b
2P 1a 1a 2a 3a 7a 7b
3P 1a 2a 4a 1a 7b 7a
5P 1a 2a 4a 3a 7b 7a
7P 1a 2a 4a 3a 1a 1a
X.1 1 1 1 1 1 1
X.2 3 -1 1 . A /A
X.3 3 -1 1 . /A A
X.4 6 2 . . -1 -1
X.5 7 -1 -1 1 . .
X.6 8 . . -1 1 1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|