Show commands:
Magma
magma: G := TransitiveGroup(42, 38);
Group action invariants
Degree $n$: | $42$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $38$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,7)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,24,40,9,25,35,14)(2,23,39,10,26,36,13)(3,19,42,11,28,31,18)(4,20,41,12,27,32,17)(5,21,38,8,30,34,15)(6,22,37,7,29,33,16), (1,32,39,24)(2,31,40,23)(3,35,37,21)(4,36,38,22)(5,33,42,19)(6,34,41,20)(7,25,11,29)(8,26,12,30)(9,28)(10,27)(13,17,14,18)(15,16) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: $\GL(3,2)$ x 2
Degree 14: $\PSL(2,7)$
Degree 21: $\PSL(2,7)$
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18},1^{6}$ | $21$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3,10)( 4, 9)( 5,12)( 6,11)(13,15)(14,16)(19,20)(23,24)(25,39)(26,40)(27,37)(28,38)(29,42)(30,41)(31,33)(32,34)$ |
3A | $3^{14}$ | $56$ | $3$ | $28$ | $( 1,32,22)( 2,31,21)( 3,34,23)( 4,33,24)( 5,36,19)( 6,35,20)( 7,25,17)( 8,26,18)( 9,27,16)(10,28,15)(11,30,13)(12,29,14)(37,40,41)(38,39,42)$ |
4A | $4^{9},2^{3}$ | $42$ | $4$ | $30$ | $( 1,42, 8,29)( 2,41, 7,30)( 3,39,10,25)( 4,40, 9,26)( 5,37,12,27)( 6,38,11,28)(13,34,15,32)(14,33,16,31)(17,36)(18,35)(19,24,20,23)(21,22)$ |
7A1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,22,31,30,40,10,14)( 2,21,32,29,39, 9,13)( 3,19,36,25,41,11,16)( 4,20,35,26,42,12,15)( 5,23,33,28,37, 7,17)( 6,24,34,27,38, 8,18)$ |
7A-1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,10,30,22,14,40,31)( 2, 9,29,21,13,39,32)( 3,11,25,19,16,41,36)( 4,12,26,20,15,42,35)( 5, 7,28,23,17,37,33)( 6, 8,27,24,18,38,34)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $168=2^{3} \cdot 3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 168.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
magma: CharacterTable(G);