Group action invariants
| Degree $n$ : | $42$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $\PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,30,22,14,40,31)(2,9,29,21,13,39,32)(3,11,25,19,16,41,36)(4,12,26,20,15,42,35)(5,7,28,23,17,37,33)(6,8,27,24,18,38,34), (1,28,33)(2,27,34)(3,30,35)(4,29,36)(5,25,31)(6,26,32)(7,10,11)(8,9,12)(13,41,21)(14,42,22)(15,40,19)(16,39,20)(17,38,24)(18,37,23) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: $\GL(3,2)$ x 2
Degree 14: None
Degree 21: $\PSL(2,7)$
Low degree siblings
7T5 x 2, 8T37Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $21$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,38)(14,37)(15,39)(16,40)(17,41)(18,42) (19,20)(21,24)(22,23)(25,32)(26,31)(27,34)(28,33)(29,35)(30,36)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $42$ | $4$ | $( 3, 5, 4, 6)( 7,19, 8,20)( 9,22,11,23)(10,21,12,24)(13,31,38,26)(14,32,37,25) (15,35,39,29)(16,36,40,30)(17,34,41,27)(18,33,42,28)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,37,31)( 8,38,32)( 9,41,35)(10,42,36)(11,40,33) (12,39,34)(13,26,19)(14,25,20)(15,30,22)(16,29,21)(17,28,24)(18,27,23)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 9,26,33,42,21,14)( 2,10,25,34,41,22,13)( 3, 7,27,31,40,24,17) ( 4, 8,28,32,39,23,18)( 5,11,30,36,37,20,15)( 6,12,29,35,38,19,16)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $24$ | $7$ | $( 1,10,18,23,25,33,38)( 2, 9,17,24,26,34,37)( 3, 8,16,22,29,32,40) ( 4, 7,15,21,30,31,39)( 5,11,14,19,28,35,42)( 6,12,13,20,27,36,41)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 3 2 . . .
3 1 . . 1 . .
7 1 . . . 1 1
1a 2a 4a 3a 7a 7b
2P 1a 1a 2a 3a 7a 7b
3P 1a 2a 4a 1a 7b 7a
5P 1a 2a 4a 3a 7b 7a
7P 1a 2a 4a 3a 1a 1a
X.1 1 1 1 1 1 1
X.2 3 -1 1 . A /A
X.3 3 -1 1 . /A A
X.4 6 2 . . -1 -1
X.5 7 -1 -1 1 . .
X.6 8 . . -1 1 1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|