Show commands:
Magma
magma: G := TransitiveGroup(42, 37);
Group action invariants
Degree $n$: | $42$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,7)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10,30,22,14,40,31)(2,9,29,21,13,39,32)(3,11,25,19,16,41,36)(4,12,26,20,15,42,35)(5,7,28,23,17,37,33)(6,8,27,24,18,38,34), (1,28,33)(2,27,34)(3,30,35)(4,29,36)(5,25,31)(6,26,32)(7,10,11)(8,9,12)(13,41,21)(14,42,22)(15,40,19)(16,39,20)(17,38,24)(18,37,23) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: $\GL(3,2)$ x 2
Degree 14: None
Degree 21: $\PSL(2,7)$
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{20},1^{2}$ | $21$ | $2$ | $20$ | $( 1, 8)( 2, 7)( 3,11)( 4,12)( 5,10)( 6, 9)(13,34)(14,33)(15,31)(16,32)(17,35)(18,36)(19,20)(21,22)(25,27)(26,28)(29,30)(37,39)(38,40)(41,42)$ |
3A | $3^{14}$ | $56$ | $3$ | $28$ | $( 1,38,24)( 2,37,23)( 3,42,19)( 4,41,20)( 5,39,22)( 6,40,21)( 7,14,29)( 8,13,30)( 9,16,27)(10,15,28)(11,18,25)(12,17,26)(31,33,35)(32,34,36)$ |
4A | $4^{10},1^{2}$ | $42$ | $4$ | $30$ | $( 1,35, 8,17)( 2,36, 7,18)( 3,31,11,15)( 4,32,12,16)( 5,33,10,14)( 6,34, 9,13)(19,21,20,22)(25,39,27,37)(26,40,28,38)(29,41,30,42)$ |
7A1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,23,38,18,33,10,25)( 2,24,37,17,34, 9,26)( 3,22,40,16,32, 8,29)( 4,21,39,15,31, 7,30)( 5,19,42,14,35,11,28)( 6,20,41,13,36,12,27)$ |
7A-1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,10,18,23,25,33,38)( 2, 9,17,24,26,34,37)( 3, 8,16,22,29,32,40)( 4, 7,15,21,30,31,39)( 5,11,14,19,28,35,42)( 6,12,13,20,27,36,41)$ |
Malle's constant $a(G)$: $1/20$
magma: ConjugacyClasses(G);
Group invariants
Order: | $168=2^{3} \cdot 3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 168.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
magma: CharacterTable(G);