Show commands: Magma
Group invariants
| Abstract group: | $C_7:S_4$ |
| |
| Order: | $168=2^{3} \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $42$ |
| |
| Transitive number $t$: | $33$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,25,10,33,15,38,23,6,29,7,31,14,42,21,4,27,11,36,18,39,20)(2,26,9,34,16,37,24,5,30,8,32,13,41,22,3,28,12,35,17,40,19)$, $(1,39,2,40)(3,37)(4,38)(5,42,6,41)(7,31,8,32)(9,35)(10,36)(11,34,12,33)(13,30)(14,29)(15,28,16,27)(17,26,18,25)(21,24,22,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $14$: $D_{7}$ $24$: $S_4$ $42$: $D_{21}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4$
Degree 7: $D_{7}$
Degree 14: None
Degree 21: $D_{21}$
Low degree siblings
28T30, 42T32Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{14},1^{14}$ | $3$ | $2$ | $14$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(15,16)(17,18)(21,22)(23,24)(25,26)(27,28)(31,32)(33,34)(39,40)(41,42)$ |
| 2B | $2^{21}$ | $42$ | $2$ | $21$ | $( 1,34)( 2,33)( 3,31)( 4,32)( 5,36)( 6,35)( 7,28)( 8,27)( 9,25)(10,26)(11,30)(12,29)(13,21)(14,22)(15,19)(16,20)(17,23)(18,24)(37,39)(38,40)(41,42)$ |
| 3A | $3^{14}$ | $8$ | $3$ | $28$ | $( 1, 5, 4)( 2, 6, 3)( 7,12,10)( 8,11, 9)(13,17,15)(14,18,16)(19,24,21)(20,23,22)(25,30,28)(26,29,27)(31,35,34)(32,36,33)(37,41,39)(38,42,40)$ |
| 4A | $4^{7},2^{6},1^{2}$ | $42$ | $4$ | $27$ | $( 1, 3, 2, 4)( 7,37, 8,38)( 9,41,10,42)(11,39)(12,40)(13,34,14,33)(15,31)(16,32)(17,36,18,35)(19,28,20,27)(21,25)(22,26)(23,30,24,29)$ |
| 7A1 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,27, 7,33,18,42,23)( 2,28, 8,34,17,41,24)( 3,30, 9,35,13,37,19)( 4,29,10,36,14,38,20)( 5,26,12,32,16,40,22)( 6,25,11,31,15,39,21)$ |
| 7A2 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1, 7,18,23,27,33,42)( 2, 8,17,24,28,34,41)( 3, 9,13,19,30,35,37)( 4,10,14,20,29,36,38)( 5,12,16,22,26,32,40)( 6,11,15,21,25,31,39)$ |
| 7A3 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,33,23, 7,42,27,18)( 2,34,24, 8,41,28,17)( 3,35,19, 9,37,30,13)( 4,36,20,10,38,29,14)( 5,32,22,12,40,26,16)( 6,31,21,11,39,25,15)$ |
| 14A1 | $14^{2},7^{2}$ | $6$ | $14$ | $38$ | $( 1,17,27,41, 7,24,33, 2,18,28,42, 8,23,34)( 3,13,30,37, 9,19,35)( 4,14,29,38,10,20,36)( 5,15,26,39,12,21,32, 6,16,25,40,11,22,31)$ |
| 14A3 | $14^{2},7^{2}$ | $6$ | $14$ | $38$ | $( 1,41,33,28,23,17, 7, 2,42,34,27,24,18, 8)( 3,37,35,30,19,13, 9)( 4,38,36,29,20,14,10)( 5,39,32,25,22,15,12, 6,40,31,26,21,16,11)$ |
| 14A5 | $14^{2},7^{2}$ | $6$ | $14$ | $38$ | $( 1,28, 7,34,18,41,23, 2,27, 8,33,17,42,24)( 3,29, 9,36,13,38,19, 4,30,10,35,14,37,20)( 5,26,12,32,16,40,22)( 6,25,11,31,15,39,21)$ |
| 21A1 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,26,10,33,16,38,23, 5,29, 7,32,14,42,22, 4,27,12,36,18,40,20)( 2,25, 9,34,15,37,24, 6,30, 8,31,13,41,21, 3,28,11,35,17,39,19)$ |
| 21A2 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,10,16,23,29,32,42, 4,12,18,20,26,33,38, 5, 7,14,22,27,36,40)( 2, 9,15,24,30,31,41, 3,11,17,19,25,34,37, 6, 8,13,21,28,35,39)$ |
| 21A4 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,15,30,42,11,19,33, 6,13,27,39, 9,23,31, 3,18,25,37, 7,21,35)( 2,16,29,41,12,20,34, 5,14,28,40,10,24,32, 4,17,26,38, 8,22,36)$ |
| 21A5 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,12,14,23,26,36,42, 5,10,18,22,29,33,40, 4, 7,16,20,27,32,38)( 2,11,13,24,25,35,41, 6, 9,17,21,30,34,39, 3, 8,15,19,28,31,37)$ |
| 21A8 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,29,12,33,14,40,23, 4,26, 7,36,16,42,20, 5,27,10,32,18,38,22)( 2,30,11,34,13,39,24, 3,25, 8,35,15,41,19, 6,28, 9,31,17,37,21)$ |
| 21A10 | $21^{2}$ | $8$ | $21$ | $40$ | $( 1,14,25,42,10,21,33, 4,15,27,38,11,23,36, 6,18,29,39, 7,20,31)( 2,13,26,41, 9,22,34, 3,16,28,37,12,24,35, 5,17,30,40, 8,19,32)$ |
Malle's constant $a(G)$: $1/14$
Character table
| 1A | 2A | 2B | 3A | 4A | 7A1 | 7A2 | 7A3 | 14A1 | 14A3 | 14A5 | 21A1 | 21A2 | 21A4 | 21A5 | 21A8 | 21A10 | ||
| Size | 1 | 3 | 42 | 8 | 42 | 2 | 2 | 2 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 3A | 2A | 7A2 | 7A3 | 7A1 | 7A1 | 7A3 | 7A2 | 21A2 | 21A4 | 21A8 | 21A10 | 21A5 | 21A1 | |
| 3 P | 1A | 2A | 2B | 1A | 4A | 7A3 | 7A1 | 7A2 | 14A3 | 14A5 | 14A1 | 7A3 | 7A1 | 7A2 | 7A1 | 7A3 | 7A2 | |
| 7 P | 1A | 2A | 2B | 3A | 4A | 1A | 1A | 1A | 2A | 2A | 2A | 3A | 3A | 3A | 3A | 3A | 3A | |
| Type | ||||||||||||||||||
| 168.46.1a | R | |||||||||||||||||
| 168.46.1b | R | |||||||||||||||||
| 168.46.2a | R | |||||||||||||||||
| 168.46.2b1 | R | |||||||||||||||||
| 168.46.2b2 | R | |||||||||||||||||
| 168.46.2b3 | R | |||||||||||||||||
| 168.46.2c1 | R | |||||||||||||||||
| 168.46.2c2 | R | |||||||||||||||||
| 168.46.2c3 | R | |||||||||||||||||
| 168.46.2c4 | R | |||||||||||||||||
| 168.46.2c5 | R | |||||||||||||||||
| 168.46.2c6 | R | |||||||||||||||||
| 168.46.3a | R | |||||||||||||||||
| 168.46.3b | R | |||||||||||||||||
| 168.46.6a1 | R | |||||||||||||||||
| 168.46.6a2 | R | |||||||||||||||||
| 168.46.6a3 | R |
Regular extensions
Data not computed