Properties

Label 42T22
42T22 1 16 1->16 35 1->35 2 17 2->17 34 2->34 3 18 3->18 36 3->36 4 4->1 33 4->33 5 5->3 32 5->32 6 6->2 31 6->31 7 7->6 12 7->12 8 8->5 10 8->10 9 9->4 11 9->11 19 10->19 20 10->20 11->20 21 11->21 12->19 12->21 13 28 13->28 13->34 14 30 14->30 14->35 15 29 15->29 15->36 16->9 37 16->37 17->7 38 17->38 18->8 39 18->39 19->4 23 19->23 20->6 24 20->24 21->5 22 21->22 22->15 22->39 23->14 23->37 24->13 24->38 25 25->11 25->23 26 26->10 26->22 27 27->12 27->24 28->27 28->31 29->26 29->32 30->25 30->33 40 31->40 31->40 41 32->41 32->41 42 33->42 33->42 34->8 34->15 35->7 35->13 36->9 36->14 37->18 37->29 38->16 38->30 39->17 39->28 40->2 40->27 41->3 41->26 42->1 42->25
Degree $42$
Order $126$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{21}:C_6$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(42, 22);
 

Group invariants

Abstract group:  $C_{21}:C_6$
Copy content magma:IdentifyGroup(G);
 
Order:  $126=2 \cdot 3^{2} \cdot 7$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $42$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $22$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,16,9,4,33,42)(2,17,7,6,31,40)(3,18,8,5,32,41)(10,19,23,37,29,26)(11,20,24,38,30,25)(12,21,22,39,28,27)(13,34,15,36,14,35)$, $(1,35,7,12,19,4)(2,34,8,10,20,6)(3,36,9,11,21,5)(13,28,31,40,27,24)(14,30,33,42,25,23)(15,29,32,41,26,22)(16,37,18,39,17,38)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $S_3$, $C_6$
$18$:  $S_3\times C_3$
$42$:  $F_7$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: $S_3\times C_3$

Degree 7: $F_7$

Degree 14: $F_7$

Degree 21: None

Low degree siblings

21T10, 42T18

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{42}$ $1$ $1$ $0$ $()$
2A $2^{21}$ $21$ $2$ $21$ $( 1,12)( 2,10)( 3,11)( 4, 7)( 5, 9)( 6, 8)(13,40)(14,42)(15,41)(16,39)(17,37)(18,38)(19,35)(20,34)(21,36)(22,32)(23,33)(24,31)(25,30)(26,29)(27,28)$
3A $3^{14}$ $2$ $3$ $28$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,35,36)(37,38,39)(40,42,41)$
3B1 $3^{14}$ $7$ $3$ $28$ $( 1,19, 7)( 2,20, 8)( 3,21, 9)( 4,12,35)( 5,11,36)( 6,10,34)(13,27,31)(14,25,33)(15,26,32)(16,17,18)(22,41,29)(23,42,30)(24,40,28)(37,38,39)$
3B-1 $3^{14}$ $7$ $3$ $28$ $( 1, 7,19)( 2, 8,20)( 3, 9,21)( 4,35,12)( 5,36,11)( 6,34,10)(13,31,27)(14,33,25)(15,32,26)(16,18,17)(22,29,41)(23,30,42)(24,28,40)(37,39,38)$
3C1 $3^{13},1^{3}$ $14$ $3$ $26$ $( 1,31, 8)( 2,32, 9)( 3,33, 7)( 4,18,40)( 5,17,42)( 6,16,41)(10,28,24)(11,29,22)(12,30,23)(19,25,39)(20,27,37)(21,26,38)(34,36,35)$
3C-1 $3^{13},1^{3}$ $14$ $3$ $26$ $( 1, 8,31)( 2, 9,32)( 3, 7,33)( 4,40,18)( 5,42,17)( 6,41,16)(10,24,28)(11,22,29)(12,23,30)(19,39,25)(20,37,27)(21,38,26)(34,35,36)$
6A1 $6^{7}$ $21$ $6$ $35$ $( 1, 4,19,12, 7,35)( 2, 6,20,10, 8,34)( 3, 5,21,11, 9,36)(13,24,27,40,31,28)(14,23,25,42,33,30)(15,22,26,41,32,29)(16,38,17,39,18,37)$
6A-1 $6^{7}$ $21$ $6$ $35$ $( 1,35, 7,12,19, 4)( 2,34, 8,10,20, 6)( 3,36, 9,11,21, 5)(13,28,31,40,27,24)(14,30,33,42,25,23)(15,29,32,41,26,22)(16,37,18,39,17,38)$
7A $7^{6}$ $6$ $7$ $36$ $( 1,31,21, 8,38,26,14)( 2,32,19, 9,39,25,13)( 3,33,20, 7,37,27,15)( 4,34,23,11,41,28,17)( 5,35,22,10,40,30,16)( 6,36,24,12,42,29,18)$
21A1 $21^{2}$ $6$ $21$ $40$ $( 1,25, 7,31,13,37,21, 2,27, 8,32,15,38,19, 3,26, 9,33,14,39,20)( 4,30,12,34,16,42,23, 5,29,11,35,18,41,22, 6,28,10,36,17,40,24)$
21A2 $21^{2}$ $6$ $21$ $40$ $( 1, 7,13,21,27,32,38, 3, 9,14,20,25,31,37, 2, 8,15,19,26,33,39)( 4,12,16,23,29,35,41, 6,10,17,24,30,34,42, 5,11,18,22,28,36,40)$

Malle's constant $a(G)$:     $1/21$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A 3B1 3B-1 3C1 3C-1 6A1 6A-1 7A 21A1 21A2
Size 1 21 2 7 7 14 14 21 21 6 6 6
2 P 1A 1A 3A 3B-1 3B1 3C-1 3C1 3B1 3B-1 7A 21A2 21A1
3 P 1A 2A 1A 1A 1A 1A 1A 2A 2A 7A 7A 7A
7 P 1A 2A 3A 3B1 3B-1 3C1 3C-1 6A1 6A-1 1A 3A 3A
Type
126.9.1a R 1 1 1 1 1 1 1 1 1 1 1 1
126.9.1b R 1 1 1 1 1 1 1 1 1 1 1 1
126.9.1c1 C 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31 1 1 1
126.9.1c2 C 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3 1 1 1
126.9.1d1 C 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31 1 1 1
126.9.1d2 C 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3 1 1 1
126.9.2a R 2 0 1 2 2 1 1 0 0 2 1 1
126.9.2b1 C 2 0 1 2ζ31 2ζ3 ζ3 ζ31 0 0 2 1 1
126.9.2b2 C 2 0 1 2ζ3 2ζ31 ζ31 ζ3 0 0 2 1 1
126.9.6a R 6 0 6 0 0 0 0 0 0 1 1 1
126.9.6b1 R 6 0 3 0 0 0 0 0 0 1 ζ2110ζ21+2ζ212ζ214ζ217+ζ218+ζ219 ζ2110+1+ζ212ζ212+ζ214+ζ217ζ218ζ219
126.9.6b2 R 6 0 3 0 0 0 0 0 0 1 ζ2110+1+ζ212ζ212+ζ214+ζ217ζ218ζ219 ζ2110ζ21+2ζ212ζ214ζ217+ζ218+ζ219

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed