Show commands: Magma
Group invariants
| Abstract group: | $C_{21}:C_6$ |
| |
| Order: | $126=2 \cdot 3^{2} \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $42$ |
| |
| Transitive number $t$: | $22$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,16,9,4,33,42)(2,17,7,6,31,40)(3,18,8,5,32,41)(10,19,23,37,29,26)(11,20,24,38,30,25)(12,21,22,39,28,27)(13,34,15,36,14,35)$, $(1,35,7,12,19,4)(2,34,8,10,20,6)(3,36,9,11,21,5)(13,28,31,40,27,24)(14,30,33,42,25,23)(15,29,32,41,26,22)(16,37,18,39,17,38)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $42$: $F_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $S_3\times C_3$
Degree 7: $F_7$
Degree 14: $F_7$
Degree 21: None
Low degree siblings
21T10, 42T18Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{21}$ | $21$ | $2$ | $21$ | $( 1,12)( 2,10)( 3,11)( 4, 7)( 5, 9)( 6, 8)(13,40)(14,42)(15,41)(16,39)(17,37)(18,38)(19,35)(20,34)(21,36)(22,32)(23,33)(24,31)(25,30)(26,29)(27,28)$ |
| 3A | $3^{14}$ | $2$ | $3$ | $28$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,35,36)(37,38,39)(40,42,41)$ |
| 3B1 | $3^{14}$ | $7$ | $3$ | $28$ | $( 1,19, 7)( 2,20, 8)( 3,21, 9)( 4,12,35)( 5,11,36)( 6,10,34)(13,27,31)(14,25,33)(15,26,32)(16,17,18)(22,41,29)(23,42,30)(24,40,28)(37,38,39)$ |
| 3B-1 | $3^{14}$ | $7$ | $3$ | $28$ | $( 1, 7,19)( 2, 8,20)( 3, 9,21)( 4,35,12)( 5,36,11)( 6,34,10)(13,31,27)(14,33,25)(15,32,26)(16,18,17)(22,29,41)(23,30,42)(24,28,40)(37,39,38)$ |
| 3C1 | $3^{13},1^{3}$ | $14$ | $3$ | $26$ | $( 1,31, 8)( 2,32, 9)( 3,33, 7)( 4,18,40)( 5,17,42)( 6,16,41)(10,28,24)(11,29,22)(12,30,23)(19,25,39)(20,27,37)(21,26,38)(34,36,35)$ |
| 3C-1 | $3^{13},1^{3}$ | $14$ | $3$ | $26$ | $( 1, 8,31)( 2, 9,32)( 3, 7,33)( 4,40,18)( 5,42,17)( 6,41,16)(10,24,28)(11,22,29)(12,23,30)(19,39,25)(20,37,27)(21,38,26)(34,35,36)$ |
| 6A1 | $6^{7}$ | $21$ | $6$ | $35$ | $( 1, 4,19,12, 7,35)( 2, 6,20,10, 8,34)( 3, 5,21,11, 9,36)(13,24,27,40,31,28)(14,23,25,42,33,30)(15,22,26,41,32,29)(16,38,17,39,18,37)$ |
| 6A-1 | $6^{7}$ | $21$ | $6$ | $35$ | $( 1,35, 7,12,19, 4)( 2,34, 8,10,20, 6)( 3,36, 9,11,21, 5)(13,28,31,40,27,24)(14,30,33,42,25,23)(15,29,32,41,26,22)(16,37,18,39,17,38)$ |
| 7A | $7^{6}$ | $6$ | $7$ | $36$ | $( 1,31,21, 8,38,26,14)( 2,32,19, 9,39,25,13)( 3,33,20, 7,37,27,15)( 4,34,23,11,41,28,17)( 5,35,22,10,40,30,16)( 6,36,24,12,42,29,18)$ |
| 21A1 | $21^{2}$ | $6$ | $21$ | $40$ | $( 1,25, 7,31,13,37,21, 2,27, 8,32,15,38,19, 3,26, 9,33,14,39,20)( 4,30,12,34,16,42,23, 5,29,11,35,18,41,22, 6,28,10,36,17,40,24)$ |
| 21A2 | $21^{2}$ | $6$ | $21$ | $40$ | $( 1, 7,13,21,27,32,38, 3, 9,14,20,25,31,37, 2, 8,15,19,26,33,39)( 4,12,16,23,29,35,41, 6,10,17,24,30,34,42, 5,11,18,22,28,36,40)$ |
Malle's constant $a(G)$: $1/21$
Character table
| 1A | 2A | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A1 | 6A-1 | 7A | 21A1 | 21A2 | ||
| Size | 1 | 21 | 2 | 7 | 7 | 14 | 14 | 21 | 21 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 3A | 3B-1 | 3B1 | 3C-1 | 3C1 | 3B1 | 3B-1 | 7A | 21A2 | 21A1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 7A | 7A | 7A | |
| 7 P | 1A | 2A | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A1 | 6A-1 | 1A | 3A | 3A | |
| Type | |||||||||||||
| 126.9.1a | R | ||||||||||||
| 126.9.1b | R | ||||||||||||
| 126.9.1c1 | C | ||||||||||||
| 126.9.1c2 | C | ||||||||||||
| 126.9.1d1 | C | ||||||||||||
| 126.9.1d2 | C | ||||||||||||
| 126.9.2a | R | ||||||||||||
| 126.9.2b1 | C | ||||||||||||
| 126.9.2b2 | C | ||||||||||||
| 126.9.6a | R | ||||||||||||
| 126.9.6b1 | R | ||||||||||||
| 126.9.6b2 | R |
Regular extensions
Data not computed