Group action invariants
| Degree $n$ : | $42$ | |
| Transitive number $t$ : | $176$ | |
| Group : | $\PSL(2,13)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,21,38,36,13,29,27)(2,20,37,35,15,30,25)(3,19,39,34,14,28,26)(4,16,22,8,31,42,11)(5,18,23,7,32,41,10)(6,17,24,9,33,40,12), (1,7,12,14,19,37)(2,8,10,13,21,39)(3,9,11,15,20,38)(4,17,40,35,26,23)(5,16,42,36,25,24)(6,18,41,34,27,22)(28,29,30)(31,32,33) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: None
Degree 14: $\PSL(2,13)$
Degree 21: None
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7, 7, 7, 7, 7 $ | $156$ | $7$ | $( 1,35,16, 5,26,19,37)( 2,34,17, 4,27,21,39)( 3,36,18, 6,25,20,38) ( 7,31,11,30,14,23,40)( 8,33,12,28,13,22,41)( 9,32,10,29,15,24,42)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $156$ | $7$ | $( 1,26,35,19,16,37, 5)( 2,27,34,21,17,39, 4)( 3,25,36,20,18,38, 6) ( 7,14,31,23,11,40,30)( 8,13,33,22,12,41,28)( 9,15,32,24,10,42,29)$ |
| $ 7, 7, 7, 7, 7, 7 $ | $156$ | $7$ | $( 1,16,26,37,35, 5,19)( 2,17,27,39,34, 4,21)( 3,18,25,38,36, 6,20) ( 7,11,14,40,31,30,23)( 8,12,13,41,33,28,22)( 9,10,15,42,32,29,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $182$ | $3$ | $( 1,10,15)( 2,11,14)( 3,12,13)( 4,42,22)( 5,41,23)( 6,40,24)( 7,25,32) ( 8,26,31)( 9,27,33)(16,30,19)(17,28,21)(18,29,20)(34,35,36)(37,39,38)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $91$ | $2$ | $( 1,29)( 2,30)( 3,28)( 4,27)( 5,26)( 6,25)( 7,24)( 8,23)( 9,22)(10,20)(11,19) (12,21)(13,17)(14,16)(15,18)(31,41)(32,40)(33,42)$ |
| $ 6, 6, 6, 6, 6, 6, 3, 3 $ | $182$ | $6$ | $( 1,18,10,29,15,20)( 2,16,11,30,14,19)( 3,17,12,28,13,21)( 4, 9,42,27,22,33) ( 5, 8,41,26,23,31)( 6, 7,40,25,24,32)(34,36,35)(37,38,39)$ |
| $ 13, 13, 13, 1, 1, 1 $ | $84$ | $13$ | $( 1,42,33,15,39, 9,28,24,19,25,17, 4,36)( 2,40,32,14,38, 7,29,23,21,26,18, 6, 35)( 3,41,31,13,37, 8,30,22,20,27,16, 5,34)$ |
| $ 13, 13, 13, 1, 1, 1 $ | $84$ | $13$ | $( 1,19,15, 4,28,42,25,39,36,24,33,17, 9)( 2,21,14, 6,29,40,26,38,35,23,32,18, 7)( 3,20,13, 5,30,41,27,37,34,22,31,16, 8)$ |
Group invariants
| Order: | $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1092, 25] |
| Character table: |
2 2 2 1 1 . . . . .
3 1 1 1 1 . . . . .
7 1 . . . 1 1 1 . .
13 1 . . . . . . 1 1
1a 2a 3a 6a 7a 7b 7c 13a 13b
2P 1a 1a 3a 3a 7c 7a 7b 13b 13a
3P 1a 2a 1a 2a 7b 7c 7a 13a 13b
5P 1a 2a 3a 6a 7c 7a 7b 13b 13a
7P 1a 2a 3a 6a 1a 1a 1a 13b 13a
11P 1a 2a 3a 6a 7b 7c 7a 13b 13a
13P 1a 2a 3a 6a 7a 7b 7c 1a 1a
X.1 1 1 1 1 1 1 1 1 1
X.2 7 -1 1 -1 . . . D *D
X.3 7 -1 1 -1 . . . *D D
X.4 12 . . . A B C -1 -1
X.5 12 . . . B C A -1 -1
X.6 12 . . . C A B -1 -1
X.7 13 1 1 1 -1 -1 -1 . .
X.8 14 2 -1 -1 . . . 1 1
X.9 14 -2 -1 1 . . . 1 1
A = -E(7)^3-E(7)^4
B = -E(7)^2-E(7)^5
C = -E(7)-E(7)^6
D = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12
= (1-Sqrt(13))/2 = -b13
|