Show commands:
Magma
magma: G := TransitiveGroup(42, 176);
Group action invariants
Degree $n$: | $42$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $176$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,13)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $3$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,21,38,36,13,29,27)(2,20,37,35,15,30,25)(3,19,39,34,14,28,26)(4,16,22,8,31,42,11)(5,18,23,7,32,41,10)(6,17,24,9,33,40,12), (1,7,12,14,19,37)(2,8,10,13,21,39)(3,9,11,15,20,38)(4,17,40,35,26,23)(5,16,42,36,25,24)(6,18,41,34,27,22)(28,29,30)(31,32,33) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 7: None
Degree 14: $\PSL(2,13)$
Degree 21: None
Low degree siblings
14T30, 28T120Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18},1^{6}$ | $91$ | $2$ | $18$ | $( 1,39)( 2,38)( 3,37)( 4,14)( 5,15)( 6,13)(10,33)(11,32)(12,31)(16,21)(17,20)(18,19)(22,26)(23,25)(24,27)(28,40)(29,41)(30,42)$ |
3A | $3^{14}$ | $182$ | $3$ | $28$ | $( 1,32,39)( 2,31,38)( 3,33,37)( 4, 6, 5)( 7,21,42)( 8,20,40)( 9,19,41)(10,17,24)(11,18,23)(12,16,22)(13,25,36)(14,27,34)(15,26,35)(28,30,29)$ |
6A | $6^{6},3^{2}$ | $182$ | $6$ | $34$ | $( 1,15,42,39, 5,30)( 2,14,40,38, 4,28)( 3,13,41,37, 6,29)( 7, 9, 8)(10,16,26,33,21,22)(11,17,27,32,20,24)(12,18,25,31,19,23)(34,36,35)$ |
7A1 | $7^{6}$ | $156$ | $7$ | $36$ | $( 1,39,27, 7,33,35,20)( 2,38,25, 8,32,34,19)( 3,37,26, 9,31,36,21)( 4,42,15,28,23,12,18)( 5,41,13,30,24,11,17)( 6,40,14,29,22,10,16)$ |
7A2 | $7^{6}$ | $156$ | $7$ | $36$ | $( 1,27,33,20,39, 7,35)( 2,25,32,19,38, 8,34)( 3,26,31,21,37, 9,36)( 4,15,23,18,42,28,12)( 5,13,24,17,41,30,11)( 6,14,22,16,40,29,10)$ |
7A3 | $7^{6}$ | $156$ | $7$ | $36$ | $( 1, 7,20,27,35,39,33)( 2, 8,19,25,34,38,32)( 3, 9,21,26,36,37,31)( 4,28,18,15,12,42,23)( 5,30,17,13,11,41,24)( 6,29,16,14,10,40,22)$ |
13A1 | $13^{3},1^{3}$ | $84$ | $13$ | $36$ | $( 1,20, 5,23,10,18,30,27,39,40,36, 9,14)( 2,19, 4,22,11,16,28,25,38,41,35, 7,13)( 3,21, 6,24,12,17,29,26,37,42,34, 8,15)$ |
13A2 | $13^{3},1^{3}$ | $84$ | $13$ | $36$ | $( 1, 5,10,30,39,36,14,20,23,18,27,40, 9)( 2, 4,11,28,38,35,13,19,22,16,25,41, 7)( 3, 6,12,29,37,34,15,21,24,17,26,42, 8)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 1092.25 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 6A | 7A1 | 7A2 | 7A3 | 13A1 | 13A2 | ||
Size | 1 | 91 | 182 | 182 | 156 | 156 | 156 | 84 | 84 | |
2 P | 1A | 1A | 3A | 3A | 7A2 | 7A3 | 7A1 | 13A2 | 13A1 | |
3 P | 1A | 2A | 1A | 2A | 7A3 | 7A1 | 7A2 | 13A1 | 13A2 | |
7 P | 1A | 2A | 3A | 6A | 1A | 1A | 1A | 13A2 | 13A1 | |
13 P | 1A | 2A | 3A | 6A | 7A1 | 7A2 | 7A3 | 1A | 1A | |
Type | ||||||||||
1092.25.1a | R | |||||||||
1092.25.7a1 | R | |||||||||
1092.25.7a2 | R | |||||||||
1092.25.12a1 | R | |||||||||
1092.25.12a2 | R | |||||||||
1092.25.12a3 | R | |||||||||
1092.25.13a | R | |||||||||
1092.25.14a | R | |||||||||
1092.25.14b | R |
magma: CharacterTable(G);