Show commands: Magma
Group invariants
| Abstract group: | $S_3\times D_7$ |
| |
| Order: | $84=2^{2} \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $42$ |
| |
| Transitive number $t$: | $13$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,27,7,34,13,39,19,4,25,10,31,16,37,21)(2,28,8,33,14,40,20,3,26,9,32,15,38,22)(5,30,11,36,17,41,23,6,29,12,35,18,42,24)$, $(3,5)(4,6)(7,37)(8,38)(9,42)(10,41)(11,40)(12,39)(13,31)(14,32)(15,35)(16,36)(17,33)(18,34)(19,25)(20,26)(21,30)(22,29)(23,28)(24,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $14$: $D_{7}$ $28$: $D_{14}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 7: $D_{7}$
Degree 14: $D_{14}$
Degree 21: 21T8
Low degree siblings
21T8, 42T14, 42T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{21}$ | $3$ | $2$ | $21$ | $( 1, 4)( 2, 3)( 5, 6)( 7,10)( 8, 9)(11,12)(13,16)(14,15)(17,18)(19,21)(20,22)(23,24)(25,27)(26,28)(29,30)(31,34)(32,33)(35,36)(37,39)(38,40)(41,42)$ |
| 2B | $2^{21}$ | $7$ | $2$ | $21$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,18)( 6,17)( 7, 8)( 9,10)(11,12)(19,38)(20,37)(21,40)(22,39)(23,41)(24,42)(25,32)(26,31)(27,33)(28,34)(29,36)(30,35)$ |
| 2C | $2^{20},1^{2}$ | $21$ | $2$ | $20$ | $( 1,35)( 2,36)( 3,33)( 4,34)( 5,31)( 6,32)( 7,29)( 8,30)( 9,28)(10,27)(11,25)(12,26)(13,23)(14,24)(15,22)(16,21)(17,19)(18,20)(37,42)(38,41)$ |
| 3A | $3^{14}$ | $2$ | $3$ | $28$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11)( 8,10,12)(13,15,17)(14,16,18)(19,22,23)(20,21,24)(25,28,29)(26,27,30)(31,33,35)(32,34,36)(37,40,42)(38,39,41)$ |
| 6A | $6^{7}$ | $14$ | $6$ | $35$ | $( 1,16, 5,14, 3,18)( 2,15, 6,13, 4,17)( 7,10,11, 8, 9,12)(19,39,23,38,22,41)(20,40,24,37,21,42)(25,34,29,32,28,36)(26,33,30,31,27,35)$ |
| 7A1 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1, 7,13,19,25,31,37)( 2, 8,14,20,26,32,38)( 3, 9,15,22,28,33,40)( 4,10,16,21,27,34,39)( 5,11,17,23,29,35,42)( 6,12,18,24,30,36,41)$ |
| 7A2 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,13,25,37, 7,19,31)( 2,14,26,38, 8,20,32)( 3,15,28,40, 9,22,33)( 4,16,27,39,10,21,34)( 5,17,29,42,11,23,35)( 6,18,30,41,12,24,36)$ |
| 7A3 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,19,37,13,31, 7,25)( 2,20,38,14,32, 8,26)( 3,22,40,15,33, 9,28)( 4,21,39,16,34,10,27)( 5,23,42,17,35,11,29)( 6,24,41,18,36,12,30)$ |
| 14A1 | $14^{3}$ | $6$ | $14$ | $39$ | $( 1,27, 7,34,13,39,19, 4,25,10,31,16,37,21)( 2,28, 8,33,14,40,20, 3,26, 9,32,15,38,22)( 5,30,11,36,17,41,23, 6,29,12,35,18,42,24)$ |
| 14A3 | $14^{3}$ | $6$ | $14$ | $39$ | $( 1,32,19, 8,37,26,13, 2,31,20, 7,38,25,14)( 3,36,22,12,40,30,15, 6,33,24, 9,41,28,18)( 4,35,21,11,39,29,16, 5,34,23,10,42,27,17)$ |
| 14A5 | $14^{3}$ | $6$ | $14$ | $39$ | $( 1,41,31,30,19,18, 7, 6,37,36,25,24,13,12)( 2,42,32,29,20,17, 8, 5,38,35,26,23,14,11)( 3,39,33,27,22,16, 9, 4,40,34,28,21,15,10)$ |
| 21A1 | $21^{2}$ | $4$ | $21$ | $40$ | $( 1,40,35,25,22,17, 7, 3,42,31,28,23,13, 9, 5,37,33,29,19,15,11)( 2,39,36,26,21,18, 8, 4,41,32,27,24,14,10, 6,38,34,30,20,16,12)$ |
| 21A2 | $21^{2}$ | $4$ | $21$ | $40$ | $( 1,35,22, 7,42,28,13, 5,33,19,11,40,25,17, 3,31,23, 9,37,29,15)( 2,36,21, 8,41,27,14, 6,34,20,12,39,26,18, 4,32,24,10,38,30,16)$ |
| 21A4 | $21^{2}$ | $4$ | $21$ | $40$ | $( 1,22,42,13,33,11,25, 3,23,37,15,35, 7,28, 5,19,40,17,31, 9,29)( 2,21,41,14,34,12,26, 4,24,38,16,36, 8,27, 6,20,39,18,32,10,30)$ |
Malle's constant $a(G)$: $1/20$
Character table
| 1A | 2A | 2B | 2C | 3A | 6A | 7A1 | 7A2 | 7A3 | 14A1 | 14A3 | 14A5 | 21A1 | 21A2 | 21A4 | ||
| Size | 1 | 3 | 7 | 21 | 2 | 14 | 2 | 2 | 2 | 6 | 6 | 6 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3A | 7A2 | 7A3 | 7A1 | 7A1 | 7A3 | 7A2 | 21A2 | 21A4 | 21A1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 2B | 7A3 | 7A1 | 7A2 | 14A3 | 14A5 | 14A1 | 7A3 | 7A1 | 7A2 | |
| 7 P | 1A | 2A | 2B | 2C | 3A | 6A | 1A | 1A | 1A | 2A | 2A | 2A | 3A | 3A | 3A | |
| Type | ||||||||||||||||
| 84.8.1a | R | |||||||||||||||
| 84.8.1b | R | |||||||||||||||
| 84.8.1c | R | |||||||||||||||
| 84.8.1d | R | |||||||||||||||
| 84.8.2a | R | |||||||||||||||
| 84.8.2b | R | |||||||||||||||
| 84.8.2c1 | R | |||||||||||||||
| 84.8.2c2 | R | |||||||||||||||
| 84.8.2c3 | R | |||||||||||||||
| 84.8.2d1 | R | |||||||||||||||
| 84.8.2d2 | R | |||||||||||||||
| 84.8.2d3 | R | |||||||||||||||
| 84.8.4a1 | R | |||||||||||||||
| 84.8.4a2 | R | |||||||||||||||
| 84.8.4a3 | R |
Regular extensions
Data not computed