Properties

Label 40T523
Order \(640\)
n \(40\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $40$
Transitive number $t$ :  $523$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,20,16)(2,5,19,15)(3,8,18,13)(4,7,17,14)(9,12,10,11)(21,32,35,28)(22,31,36,27)(23,30,33,26)(24,29,34,25)(37,40,38,39), (1,28,8,38)(2,27,7,37)(3,25,5,40)(4,26,6,39)(9,32,19,33)(10,31,20,34)(11,30,18,36)(12,29,17,35)(13,24,14,23)(15,22,16,21), (1,21,3,23,2,22,4,24)(5,37,7,40,6,38,8,39)(9,35,12,33,10,36,11,34)(13,29,15,32,14,30,16,31)(17,27,20,25,18,28,19,26), (1,4,2,3)(5,14,17,10)(6,13,18,9)(7,16,20,11)(8,15,19,12)(21,27,39,33)(22,28,40,34)(23,25,37,36)(24,26,38,35)(29,32,30,31)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_4$ x 8, $C_2^2$ x 35
8:  $D_{4}$ x 4, $C_4\times C_2$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 6, $Q_8:C_2$ x 2
20:  $F_5$
32:  $Z_8 : Z_8^\times$ x 2
40:  $F_{5}\times C_2$ x 7

Resolvents shown for degrees $\leq 10$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: $F_5$

Degree 8: $Z_8 : Z_8^\times$

Degree 10: $F_{5}\times C_2$

Degree 20: 20T42

Low degree siblings

There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $640=2^{7} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [640, 19528]
Character table: Data not available.