Show commands:
Magma
magma: G := TransitiveGroup(40, 48);
Group action invariants
Degree $n$: | $40$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $48$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5:D_8$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,7,19,11,2,13,8,20,12)(3,15,5,17,10)(4,16,6,18,9)(21,33,27,37,32,24,36,25,39,29)(22,34,28,38,31,23,35,26,40,30), (1,33,3,36,2,34,4,35)(5,32,8,30,6,31,7,29)(9,28,11,25,10,27,12,26)(13,24,15,21,14,23,16,22)(17,39,19,38,18,40,20,37) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $10$: $D_{5}$ $16$: $D_{8}$ $20$: $D_{10}$ $40$: 20T7 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 8: $D_{8}$
Degree 10: $D_5$
Degree 20: 20T11
Low degree siblings
40T32Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{20}$ | $1$ | $2$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
2B | $2^{15},1^{10}$ | $4$ | $2$ | $15$ | $( 3, 4)( 5, 6)( 9,10)(15,16)(17,18)(21,23)(22,24)(25,28)(26,27)(29,31)(30,32)(33,35)(34,36)(37,40)(38,39)$ |
2C | $2^{20}$ | $20$ | $2$ | $20$ | $( 1,35)( 2,36)( 3,34)( 4,33)( 5,30)( 6,29)( 7,31)( 8,32)( 9,25)(10,26)(11,28)(12,27)(13,22)(14,21)(15,23)(16,24)(17,38)(18,37)(19,39)(20,40)$ |
4A | $4^{10}$ | $2$ | $4$ | $30$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,32,30,31)(33,36,34,35)(37,39,38,40)$ |
5A1 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1,11,20, 7,13)( 2,12,19, 8,14)( 3,10,17, 5,15)( 4, 9,18, 6,16)(21,32,39,27,36)(22,31,40,28,35)(23,30,38,26,34)(24,29,37,25,33)$ |
5A2 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1, 7,11,13,20)( 2, 8,12,14,19)( 3, 5,10,15,17)( 4, 6, 9,16,18)(21,27,32,36,39)(22,28,31,35,40)(23,26,30,34,38)(24,25,29,33,37)$ |
8A1 | $8^{5}$ | $10$ | $8$ | $35$ | $( 1,34, 3,35, 2,33, 4,36)( 5,31, 8,29, 6,32, 7,30)( 9,27,11,26,10,28,12,25)(13,23,15,22,14,24,16,21)(17,40,19,37,18,39,20,38)$ |
8A3 | $8^{5}$ | $10$ | $8$ | $35$ | $( 1,33, 3,36, 2,34, 4,35)( 5,32, 8,30, 6,31, 7,29)( 9,28,11,25,10,27,12,26)(13,24,15,21,14,23,16,22)(17,39,19,38,18,40,20,37)$ |
10A1 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,12,20, 8,13, 2,11,19, 7,14)( 3, 9,17, 6,15, 4,10,18, 5,16)(21,31,39,28,36,22,32,40,27,35)(23,29,38,25,34,24,30,37,26,33)$ |
10A3 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1, 8,11,14,20, 2, 7,12,13,19)( 3, 6,10,16,17, 4, 5, 9,15,18)(21,28,32,35,39,22,27,31,36,40)(23,25,30,33,38,24,26,29,34,37)$ |
10B1 | $10^{3},5^{2}$ | $4$ | $10$ | $35$ | $( 1,20,13,11, 7)( 2,19,14,12, 8)( 3,18,15, 9, 5, 4,17,16,10, 6)(21,38,36,30,27,23,39,34,32,26)(22,37,35,29,28,24,40,33,31,25)$ |
10B-1 | $10^{3},5^{2}$ | $4$ | $10$ | $35$ | $( 1,11,20, 7,13)( 2,12,19, 8,14)( 3, 9,17, 6,15, 4,10,18, 5,16)(21,30,39,26,36,23,32,38,27,34)(22,29,40,25,35,24,31,37,28,33)$ |
10B3 | $10^{3},5^{2}$ | $4$ | $10$ | $35$ | $( 1,13, 7,20,11)( 2,14, 8,19,12)( 3,16, 5,18,10, 4,15, 6,17, 9)(21,34,27,38,32,23,36,26,39,30)(22,33,28,37,31,24,35,25,40,29)$ |
10B-3 | $10^{3},5^{2}$ | $4$ | $10$ | $35$ | $( 1, 7,11,13,20)( 2, 8,12,14,19)( 3, 6,10,16,17, 4, 5, 9,15,18)(21,26,32,34,39,23,27,30,36,38)(22,25,31,33,40,24,28,29,35,37)$ |
20A1 | $20^{2}$ | $4$ | $20$ | $38$ | $( 1, 5,12,16,20, 3, 8, 9,13,17, 2, 6,11,15,19, 4, 7,10,14,18)(21,26,31,33,39,23,28,29,36,38,22,25,32,34,40,24,27,30,35,37)$ |
20A3 | $20^{2}$ | $4$ | $20$ | $38$ | $( 1,10,19, 6,13, 3,12,18, 7,15, 2, 9,20, 5,14, 4,11,17, 8,16)(21,30,40,25,36,23,31,37,27,34,22,29,39,26,35,24,32,38,28,33)$ |
Malle's constant $a(G)$: $1/15$
magma: ConjugacyClasses(G);
Group invariants
Order: | $80=2^{4} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 80.15 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 4A | 5A1 | 5A2 | 8A1 | 8A3 | 10A1 | 10A3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 20A1 | 20A3 | ||
Size | 1 | 1 | 4 | 20 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 2A | 5A2 | 5A1 | 4A | 4A | 5A2 | 5A1 | 5A1 | 5A2 | 5A2 | 5A1 | 10A1 | 10A3 | |
5 P | 1A | 2A | 2B | 2C | 4A | 1A | 1A | 8A3 | 8A1 | 2A | 2A | 2B | 2B | 2B | 2B | 4A | 4A | |
Type | ||||||||||||||||||
80.15.1a | R | |||||||||||||||||
80.15.1b | R | |||||||||||||||||
80.15.1c | R | |||||||||||||||||
80.15.1d | R | |||||||||||||||||
80.15.2a | R | |||||||||||||||||
80.15.2b1 | R | |||||||||||||||||
80.15.2b2 | R | |||||||||||||||||
80.15.2c1 | R | |||||||||||||||||
80.15.2c2 | R | |||||||||||||||||
80.15.2d1 | R | |||||||||||||||||
80.15.2d2 | R | |||||||||||||||||
80.15.2e1 | C | |||||||||||||||||
80.15.2e2 | C | |||||||||||||||||
80.15.2e3 | C | |||||||||||||||||
80.15.2e4 | C | |||||||||||||||||
80.15.4a1 | R | |||||||||||||||||
80.15.4a2 | R |
magma: CharacterTable(G);