Group action invariants
| Degree $n$ : | $40$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $C_2\times C_5:C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,18,28,36,3,10,19,25,34)(2,12,17,27,35,4,9,20,26,33)(5,16,24,32,38,7,13,21,29,39)(6,15,23,31,37,8,14,22,30,40), (1,38,4,40)(2,37,3,39)(5,33,8,36)(6,34,7,35)(9,30,11,32)(10,29,12,31)(13,27,15,25)(14,28,16,26)(17,23,19,21)(18,24,20,22) | |
| $|\Aut(F/K)|$: | $40$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 10: $D_{5}$ 20: $D_{10}$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 5: $D_{5}$
Degree 8: $C_4\times C_2$
Low degree siblings
There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24) (22,23)(25,28)(26,27)(29,32)(30,31)(33,35)(34,36)(37,40)(38,39)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23) (22,24)(25,27)(26,28)(29,31)(30,32)(33,36)(34,35)(37,39)(38,40)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 5, 4, 8)( 2, 6, 3, 7)( 9,37,11,39)(10,38,12,40)(13,33,15,36)(14,34,16,35) (17,30,19,32)(18,29,20,31)(21,26,23,28)(22,25,24,27)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 6, 4, 7)( 2, 5, 3, 8)( 9,38,11,40)(10,37,12,39)(13,34,15,35)(14,33,16,36) (17,29,19,31)(18,30,20,32)(21,25,23,27)(22,26,24,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 7, 4, 6)( 2, 8, 3, 5)( 9,40,11,38)(10,39,12,37)(13,35,15,34)(14,36,16,33) (17,31,19,29)(18,32,20,30)(21,27,23,25)(22,28,24,26)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 8, 4, 5)( 2, 7, 3, 6)( 9,39,11,37)(10,40,12,38)(13,36,15,33)(14,35,16,34) (17,32,19,30)(18,31,20,29)(21,28,23,26)(22,27,24,25)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1, 9,18,26,36, 2,10,17,25,35)( 3,12,19,27,34, 4,11,20,28,33)( 5,14,24,30,38, 6,13,23,29,37)( 7,15,21,31,39, 8,16,22,32,40)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,18,25,36)( 2, 9,17,26,35)( 3,11,19,28,34)( 4,12,20,27,33) ( 5,13,24,29,38)( 6,14,23,30,37)( 7,16,21,32,39)( 8,15,22,31,40)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,11,18,28,36, 3,10,19,25,34)( 2,12,17,27,35, 4, 9,20,26,33)( 5,16,24,32,38, 7,13,21,29,39)( 6,15,23,31,37, 8,14,22,30,40)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,12,18,27,36, 4,10,20,25,33)( 2,11,17,28,35, 3, 9,19,26,34)( 5,15,24,31,38, 8,13,22,29,40)( 6,16,23,32,37, 7,14,21,30,39)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,17,36, 9,25, 2,18,35,10,26)( 3,20,34,12,28, 4,19,33,11,27)( 5,23,38,14,29, 6,24,37,13,30)( 7,22,39,15,32, 8,21,40,16,31)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,18,36,10,25)( 2,17,35, 9,26)( 3,19,34,11,28)( 4,20,33,12,27) ( 5,24,38,13,29)( 6,23,37,14,30)( 7,21,39,16,32)( 8,22,40,15,31)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,19,36,11,25, 3,18,34,10,28)( 2,20,35,12,26, 4,17,33, 9,27)( 5,21,38,16,29, 7,24,39,13,32)( 6,22,37,15,30, 8,23,40,14,31)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,20,36,12,25, 4,18,33,10,27)( 2,19,35,11,26, 3,17,34, 9,28)( 5,22,38,15,29, 8,24,40,13,31)( 6,21,37,16,30, 7,23,39,14,32)$ |
Group invariants
| Order: | $40=2^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [40, 7] |
| Character table: |
2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
5 1 1 1 1 . . . . 1 1 1 1 1 1 1 1
1a 2a 2b 2c 4a 4b 4c 4d 10a 5a 10b 10c 10d 5b 10e 10f
2P 1a 1a 1a 1a 2c 2c 2c 2c 5b 5b 5b 5b 5a 5a 5a 5a
3P 1a 2a 2b 2c 4d 4c 4b 4a 10d 5b 10e 10f 10a 5a 10b 10c
5P 1a 2a 2b 2c 4a 4b 4c 4d 2a 1a 2b 2c 2a 1a 2b 2c
7P 1a 2a 2b 2c 4d 4c 4b 4a 10d 5b 10e 10f 10a 5a 10b 10c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1
X.4 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
X.5 1 -1 1 -1 A -A A -A -1 1 1 -1 -1 1 1 -1
X.6 1 -1 1 -1 -A A -A A -1 1 1 -1 -1 1 1 -1
X.7 1 1 -1 -1 A A -A -A 1 1 -1 -1 1 1 -1 -1
X.8 1 1 -1 -1 -A -A A A 1 1 -1 -1 1 1 -1 -1
X.9 2 -2 -2 2 . . . . B -B B -B *B -*B *B -*B
X.10 2 -2 -2 2 . . . . *B -*B *B -*B B -B B -B
X.11 2 -2 2 -2 . . . . B -B -B B *B -*B -*B *B
X.12 2 -2 2 -2 . . . . *B -*B -*B *B B -B -B B
X.13 2 2 -2 -2 . . . . -*B -*B *B *B -B -B B B
X.14 2 2 -2 -2 . . . . -B -B B B -*B -*B *B *B
X.15 2 2 2 2 . . . . -*B -*B -*B -*B -B -B -B -B
X.16 2 2 2 2 . . . . -B -B -B -B -*B -*B -*B -*B
A = -E(4)
= -Sqrt(-1) = -i
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|